This should be straightforward, but the closest thing I've found is this post: pandas: Filling missing values within a group, and I still can't solve my problem....
Suppose I have the following dataframe
df = pd.DataFrame({'value': [1, np.nan, np.nan, 2, 3, 1, 3, np.nan, 3], 'name': ['A','A', 'B','B','B','B', 'C','C','C']}) name value 0 A 1 1 A NaN 2 B NaN 3 B 2 4 B 3 5 B 1 6 C 3 7 C NaN 8 C 3
and I'd like to fill in "NaN" with mean value in each "name" group, i.e.
name value 0 A 1 1 A 1 2 B 2 3 B 2 4 B 3 5 B 1 6 C 3 7 C 3 8 C 3
I'm not sure where to go after:
grouped = df.groupby('name').mean()
Thanks a bunch.
One way would be to use transform
:
>>> df name value 0 A 1 1 A NaN 2 B NaN 3 B 2 4 B 3 5 B 1 6 C 3 7 C NaN 8 C 3 >>> df["value"] = df.groupby("name").transform(lambda x: x.fillna(x.mean())) >>> df name value 0 A 1 1 A 1 2 B 2 3 B 2 4 B 3 5 B 1 6 C 3 7 C 3 8 C 3
fillna
+ groupby
+ transform
+ mean
This seems intuitive:
df['value'] = df['value'].fillna(df.groupby('name')['value'].transform('mean'))
The groupby
+ transform
syntax maps the groupwise mean to the index of the original dataframe. This is roughly equivalent to @DSM's solution, but avoids the need to define an anonymous lambda
function.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With