I have two Pandas dataframes, namely: habitat_family
and habitat_species
. I want to populate habitat_species
based on the taxonomical lookupMap
and the values in habitat_family
:
import pandas as pd
import numpy as np
species = ['tiger', 'lion', 'mosquito', 'ladybug', 'locust', 'seal', 'seabass', 'shark', 'dolphin']
families = ['mammal','fish','insect']
lookupMap = {'tiger':'mammal', 'lion':'mammal', 'mosquito':'insect', 'ladybug':'insect', 'locust':'insect',
'seal':'mammal', 'seabass':'fish', 'shark':'fish', 'dolphin':'mammal' }
habitat_family = pd.DataFrame({'id': range(1,11),
'mammal': [101,123,523,562,546,213,562,234,987,901],
'fish' : [625,254,929,827,102,295,174,777,123,763],
'insect': [345,928,183,645,113,942,689,539,789,814]
}, index=range(1,11), columns=['id','mammal','fish','insect'])
habitat_species = pd.DataFrame(0.0, index=range(1,11), columns=species)
# My highly inefficient solution:
for id in habitat_family.index: # loop through habitat id's
for spec in species: # loop through species
corresp_family = lookupMap[spec]
habitat_species.loc[id,spec] = habitat_family.loc[id,corresp_family]
The nested for loops above do the job. But in reality the sizes of my dataframes are massive and using for loops are not feasible.
Is there a more efficient method to achieve this using maybe dataframe.apply()
or a similar function?
EDIT: The desired output habitat_species
is:
habitat_species
tiger lion mosquito ladybug locust seal seabass shark dolphin
1 101 101 345 345 345 101 625 625 101
2 123 123 928 928 928 123 254 254 123
3 523 523 183 183 183 523 929 929 523
4 562 562 645 645 645 562 827 827 562
5 546 546 113 113 113 546 102 102 546
6 213 213 942 942 942 213 295 295 213
7 562 562 689 689 689 562 174 174 562
8 234 234 539 539 539 234 777 777 234
9 987 987 789 789 789 987 123 123 987
10 901 901 814 814 814 901 763 763 901
You don't need any loops at all. Check it out:
In [12]: habitat_species = habitat_family[Series(species).replace(lookupMap)]
In [13]: habitat_species.columns = species
In [14]: habitat_species
Out[14]:
tiger lion mosquito ladybug locust seal seabass shark dolphin
1 101 101 345 345 345 101 625 625 101
2 123 123 928 928 928 123 254 254 123
3 523 523 183 183 183 523 929 929 523
4 562 562 645 645 645 562 827 827 562
5 546 546 113 113 113 546 102 102 546
6 213 213 942 942 942 213 295 295 213
7 562 562 689 689 689 562 174 174 562
8 234 234 539 539 539 234 777 777 234
9 987 987 789 789 789 987 123 123 987
10 901 901 814 814 814 901 763 763 901
[10 rows x 9 columns]
First of all, fantastically written question. Thanks.
I would suggest making a DataFrame for each family, and concatenating at the end:
You'll need to reverse your lookupMap
:
In [80]: d = {'mammal': ['dolphin', 'lion', 'seal', 'tiger'], 'insect': ['ladybug', 'locust', 'mosquito'], 'fish':
['seabass', 'shark']}
So as an example:
In [83]: k, v = 'mammal', d['mammal']
In [86]: pd.DataFrame([habitat_family[k] for _ in v], index=v).T
Out[86]:
dolphin lion seal tiger
1 101 101 101 101
2 123 123 123 123
3 523 523 523 523
4 562 562 562 562
5 546 546 546 546
6 213 213 213 213
7 562 562 562 562
8 234 234 234 234
9 987 987 987 987
10 901 901 901 901
[10 rows x 4 columns]
Now do that for each family:
In [88]: for k, v in d.iteritems():
....: results.append(pd.DataFrame([habitat_family[k] for _ in v], index=v).T)
And concat:
In [89]: habitat_species = pd.concat(results, axis=1)
In [90]: habi
habitat_family habitat_species
In [90]: habitat_species
Out[90]:
dolphin lion seal tiger ladybug locust mosquito seabass shark
1 101 101 101 101 345 345 345 625 625
2 123 123 123 123 928 928 928 254 254
3 523 523 523 523 183 183 183 929 929
4 562 562 562 562 645 645 645 827 827
5 546 546 546 546 113 113 113 102 102
6 213 213 213 213 942 942 942 295 295
7 562 562 562 562 689 689 689 174 174
8 234 234 234 234 539 539 539 777 777
9 987 987 987 987 789 789 789 123 123
10 901 901 901 901 814 814 814 763 763
[10 rows x 9 columns]
You might consider passing the families as the key
parameter to concat
if you want a hierarchical index for the columns with (family, species) pairs.
Some profiling, since you said performance matters:
# Mine
In [97]: %%timeit
....: for k, v in d.iteritems():
....: results.append(pd.DataFrame([habitat_family[k] for _ in v], index=v).T)
....: habitat_species = pd.concat(results, axis=1)
....:
1 loops, best of 3: 296 ms per loop
# Your's
In [98]: %%timeit
....: for id in habitat_family.index: # loop through habitat id's
....: for spec in species: # loop through species
....: corresp_family = lookupMap[spec]
....: habitat_species.loc[id,spec] = habitat_family.loc[id,corresp_family]
10 loops, best of 3: 21.5 ms per loop
# Dan's
In [102]: %%timeit
.....: habitat_species = habitat_family[Series(species).replace(lookupMap)]
.....: habitat_species.columns = species
.....:
100 loops, best of 3: 2.55 ms per loop
Looks like Dan wins by a longshot!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With