I have a dataframe, grouped
, with multiindex columns as below:
import pandas as pd codes = ["one","two","three"]; colours = ["black", "white"]; textures = ["soft", "hard"]; N= 100 # length of the dataframe df = pd.DataFrame({ 'id' : range(1,N+1), 'weeks_elapsed' : [random.choice(range(1,25)) for i in range(1,N+1)], 'code' : [random.choice(codes) for i in range(1,N+1)], 'colour': [random.choice(colours) for i in range(1,N+1)], 'texture': [random.choice(textures) for i in range(1,N+1)], 'size': [random.randint(1,100) for i in range(1,N+1)], 'scaled_size': [random.randint(100,1000) for i in range(1,N+1)] }, columns= ['id', 'weeks_elapsed', 'code','colour', 'texture', 'size', 'scaled_size']) grouped = df.groupby(['code', 'colour']).agg( {'size': [np.sum, np.average, np.size, pd.Series.idxmax],'scaled_size': [np.sum, np.average, np.size, pd.Series.idxmax]}).reset_index() >> grouped code colour size scaled_size sum average size idxmax sum average size idxmax 0 one black 1031 60.647059 17 81 185.153944 10.891408 17 47 1 one white 481 37.000000 13 53 204.139249 15.703019 13 53 2 three black 822 48.352941 17 6 123.269405 7.251141 17 31 3 three white 1614 57.642857 28 50 285.638337 10.201369 28 37 4 two black 523 58.111111 9 85 80.908912 8.989879 9 88 5 two white 669 41.812500 16 78 82.098870 5.131179 16 78 [6 rows x 10 columns]
How can I flatten/merge the column index levels as: "Level1|Level2", e.g. size|sum
, scaled_size|sum
. etc? If this is not possible, is there a way to groupby()
as I did above without creating multi-index columns?
grouped.columns = grouped.columns.map('|'.join).str.strip('|') print(grouped)
Output:
code colour size|sum size|average size|size size|idxmax \ 0 one black 862 53.875000 16 14 1 one white 554 46.166667 12 18 2 three black 842 49.529412 17 90 3 three white 740 56.923077 13 97 4 two black 1541 61.640000 25 50 scaled_size|sum scaled_size|average scaled_size|size scaled_size|idxmax 0 6980 436.250000 16 77 1 6101 508.416667 12 13 2 7889 464.058824 17 64 3 6329 486.846154 13 73 4 12809 512.360000 25 23
grouped.columns = grouped.columns.map('{0[0]}|{0[1]}'.format)
Output:
code| colour| size|sum size|average size|size size|idxmax \ 0 one black 734 52.428571 14 30 1 one white 1110 65.294118 17 88 2 three black 930 51.666667 18 3 3 three white 1140 51.818182 22 20 4 two black 656 38.588235 17 77 5 two white 704 58.666667 12 17 scaled_size|sum scaled_size|average scaled_size|size scaled_size|idxmax 0 8229 587.785714 14 57 1 8781 516.529412 17 73 2 10743 596.833333 18 21 3 10240 465.454545 22 26 4 9982 587.176471 17 16 5 6537 544.750000 12 49
grouped.columns = [f'{i}|{j}' if j != '' else f'{i}' for i,j in grouped.columns]
Output:
code colour size|sum size|average size|size size|idxmax \ 0 one black 1003 43.608696 23 76 1 one white 1255 59.761905 21 66 2 three black 777 45.705882 17 39 3 three white 630 52.500000 12 23 4 two black 823 54.866667 15 33 5 two white 491 40.916667 12 64 scaled_size|sum scaled_size|average scaled_size|size scaled_size|idxmax 0 12532 544.869565 23 27 1 13223 629.666667 21 13 2 8615 506.764706 17 92 3 6101 508.416667 12 43 4 7661 510.733333 15 42 5 6143 511.916667 12 49
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With