I have a pandas dataframe/csv of the form
date Country Type Val
2013-01-01 USA x 23
2013-01-01 USA y 13
2013-01-01 MX x 11
2013-01-01 MX y 14
2013-01-02 USA x 20
2013-01-02 USA y 19
2013-01-02 MX x 14
2013-01-02 MX y 16
I want to convert this to a form
date Country x y
2013-01-01 USA 23 13
2013-01-01 MX 11 14
2013-01-02 USA 20 19
2013-01-02 MX 14 16
In general I am looking for a way to transform a table using unique values of a single column.
I have looked at pivot
and groupby
but didn't get the exact form.
HINT: possibly this is solvable by pivot
but I haven't been able to get the form
Probably not the most elegant way possible, but using unstack:
>>> df
date Country Type Val
0 2013-01-01 USA x 23
1 2013-01-01 USA y 13
2 2013-01-01 MX x 11
3 2013-01-01 MX y 14
4 2013-01-02 USA x 20
5 2013-01-02 USA y 19
6 2013-01-02 MX x 14
7 2013-01-02 MX y 16
>>> df.set_index(['date', 'Country', 'Type']).unstack('Type').reset_index()
date Country Val
Type x y
0 2013-01-01 MX 11 14
1 2013-01-01 USA 23 13
2 2013-01-02 MX 14 16
3 2013-01-02 USA 20 19
A little more generally, and removing the strange hierarchical columns in the result:
>>> cols = [c for c in df.columns if c not in {'Type', 'Val'}]
>>> df2 = df.set_index(cols + ['Type']).unstack('Type')
>>> df2
Val
Type x y
date Country
2013-01-01 MX 11 14
USA 23 13
2013-01-02 MX 14 16
USA 20 19
>>> df2.columns = df2.columns.levels[1]
>>> df2.columns.name = None
>>> df2
x y
date Country
2013-01-01 MX 11 14
USA 23 13
2013-01-02 MX 14 16
USA 20 19
>>> df2.reset_index()
date Country x y
0 2013-01-01 MX 11 14
1 2013-01-01 USA 23 13
2 2013-01-02 MX 14 16
3 2013-01-02 USA 20 19
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With