What is the best way to convert following pandas dataframe to a key value pair
Before :
datetime name qty price
2017-11-01 10:20 apple 5 1
2017-11-01 11:20 pear 2 1.5
2017-11-01 13:20 banana 10 5
After :
2017-11-01 10:20 name=apple qty=5 price=1
2017-11-01 11:20 name=pear qty=2 price=1.5
2017-11-01 13:20 name=banana qty=10 price=5
note that i don't want the datetime key in my output.
It seems you need to_dict
:
d = df.drop('datetime', axis=1).to_dict(orient='records')
print (d)
[{'qty': 5, 'price': 1.0, 'name': 'apple'},
{'qty': 2, 'price': 1.5, 'name': 'pear'},
{'qty': 10, 'price': 5.0, 'name': 'banana'}]
but if need not key datetime
:
d = df.set_index('datetime').to_dict(orient='index')
print (d)
{'2017-11-01 13:20': {'qty': 10, 'price': 5.0, 'name': 'banana'},
'2017-11-01 10:20': {'qty': 5, 'price': 1.0, 'name': 'apple'},
'2017-11-01 11:20': {'qty': 2, 'price': 1.5, 'name': 'pear'}}
If order is important:
tuples = [tup for tup in df.set_index('datetime').itertuples()]
print (tuples)
[Pandas(Index='2017-11-01 10:20', name='apple', qty=5, price=1.0),
Pandas(Index='2017-11-01 11:20', name='pear', qty=2, price=1.5),
Pandas(Index='2017-11-01 13:20', name='banana', qty=10, price=5.0)]
EDIT:
New DataFrame
was created with column names and old values was added. Last write to_csv
:
df = df.set_index('datetime').astype(str)
df1 = pd.DataFrame(np.tile(np.array(df.columns), len(df.index)).reshape(len(df.index), -1),
index=df.index,
columns=df.columns) + '='
df1 = df1.add(df)
print (df1)
name qty price
datetime
2017-11-01 10:20 name=apple qty=5 price=1.0
2017-11-01 11:20 name=pear qty=2 price=1.5
2017-11-01 13:20 name=banana qty=10 price=5.0
df1.to_csv('filename.csv', header=None)
2017-11-01 10:20,name=apple,qty=5,price=1.0
2017-11-01 11:20,name=pear,qty=2,price=1.5
2017-11-01 13:20,name=banana,qty=10,price=5.0
If you are happy with a dictionary as output, you can use
df.to_dict('index')
On your example (with a slight parsing error for the dates by read_clipboard
) this results in:
In [17]: df = pd.read_clipboard().reset_index(drop=True)
In [18]: df.to_dict('index')
Out[18]:
{0: {'datetime': '10:20', 'name': 'apple', 'price': 1.0, 'qty': 5},
1: {'datetime': '11:20', 'name': 'pear', 'price': 1.5, 'qty': 2},
2: {'datetime': '13:20', 'name': 'banana', 'price': 5.0, 'qty': 10}}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With