I wanted to ask a questions regarding merging multiindex dataframe in pandas, here is a hypothetical scenario:
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
          ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index1 = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
index2 = pd.MultiIndex.from_tuples(tuples, names=['third', 'fourth'])
s1 = pd.DataFrame(np.random.randn(8), index=index1, columns=['s1'])
s2 = pd.DataFrame(np.random.randn(8), index=index2, columns=['s2'])
Then either
s1.merge(s2, how='left', left_index=True, right_index=True)
or
s1.merge(s2, how='left', left_on=['first', 'second'], right_on=['third', 'fourth'])
will result in error.
Do I have to do reset_index() on either s1/s2 to make this work?
We can use either pandas. merge() or DataFrame. merge() to merge multiple Dataframes. Merging multiple Dataframes is similar to SQL join and supports different types of join inner , left , right , outer , cross .
Seems like you need to use a combination of them.
s1.merge(s2, left_index=True, right_on=['third', 'fourth'])
#s1.merge(s2, right_index=True, left_on=['first', 'second'])
               s1        s2
bar one  0.765385 -0.365508
    two  1.462860  0.751862
baz one  0.304163  0.761663
    two -0.816658 -1.810634
foo one  1.891434  1.450081
    two  0.571294  1.116862
qux one  1.056516 -0.052927
    two -0.574916 -1.197596
                        Other than using the indexes names as pointed by @ALollz, you can simply use loc, which will match indexes automatically
s1.loc[:, 's2'] = s2   # Or explicitly, s2['s2']
                s1           s2
first   second      
bar     one     -0.111384   -2.341803
        two     -1.226569    1.308240
baz     one      1.880835    0.697946
        two     -0.008979   -0.247896
foo     one      0.103864   -1.039990
        two      0.836931    0.000811
qux     one     -0.859005   -1.199615
        two     -0.321341   -1.098691
A general formula would be
s1.loc[:, s2.columns] = s2
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With