I have my dataframe like below:
+--------------+--------------+----+-----+-------+
| x1 | x2 | km | gmm | class |
+--------------+--------------+----+-----+-------+
| 180.9863129 | -0.266379416 | 24 | 19 | T |
| 52.20132828 | 28.93587875 | 16 | 14 | I |
| -17.17127419 | 29.97013283 | 17 | 16 | D |
| 37.28710938 | -69.96691132 | 3 | 6 | N |
| -132.2395782 | 27.02541733 | 15 | 18 | G |
| -12.52811623 | -87.90951538 | 22 | 5 | S |
The classes are basically alphabets(A to Z). However, I want the output like A=1, B=2... Z= 26.
Now, for normal python list, I can convert them like ord(c.lower()) - ord('a')) % 9) + 1
However, how to do that in a dataframe
Option 1
Assuming your column only has single, uppercase characters, you can do a little arithmetic on the view
:
df['class'] = df['class'].values.astype('<U1').view(np.uint32) - 64
df
x1 x2 km gmm class
0 180.986313 -0.266379 24 19 20
1 52.201328 28.935879 16 14 9
2 -17.171274 29.970133 17 16 4
3 37.287109 -69.966911 3 6 14
4 -132.239578 27.025417 15 18 7
5 -12.528116 -87.909515 22 5 19
This is the fastest method I can think of for large data.
If there is the chance you have erratic data, you may consider a preprocessing step like this:
df['class'] = df['class'].str.upper().str[0]
Option 2ord
df['class'] = [ord(c) - 64 for c in df['class']]
Or,
df['class'] = df['class'].apply(ord) - 64
df
x1 x2 km gmm class
0 180.986313 -0.266379 24 19 20
1 52.201328 28.935879 16 14 9
2 -17.171274 29.970133 17 16 4
3 37.287109 -69.966911 3 6 14
4 -132.239578 27.025417 15 18 7
5 -12.528116 -87.909515 22 5 19
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With