I have a dataframe
that looks like the following:
In [74]: data2
Out[74]:
a b c
2012-06-12 0 1 1
2012-06-13 1 1 0
2012-06-14 1 0 1
2012-06-15 1 0 1
2012-06-16 1 1 0
2012-06-17 1 0 1
Is there a way to make the values = the column heading where the value = 1?
Result df:
a b c
2012-06-12 0 b c
2012-06-13 a b 0
2012-06-14 a 0 c
2012-06-15 a 0 c
2012-06-16 a b 0
2012-06-17 a 0 c
And then remove the values that = 0 such that the df reduces to 2 columns: (column heading is not relevant at this point)
Result df:
1 2
2012-06-12 c b
2012-06-13 a b
2012-06-14 a c
2012-06-15 a c
2012-06-16 a b
2012-06-17 a c
You can also summon some deeper pandas-fu and do:
In [28]: df.apply(lambda x: x.astype(object).replace(1, x.name))
Out[28]:
a b c
2012-06-12 0 b c
2012-06-13 a b 0
2012-06-14 a 0 c
2012-06-15 a 0 c
2012-06-16 a b 0
2012-06-17 a 0 c
from pandas import *
df = DataFrame([[0, 1, 1], [1, 1, 0], [1, 0, 1],], columns=['a','b','c'])
foo = []
for i in df.index:
foo.append( df.columns[df.ix[i] == 1])
DataFrame(foo, index = df.index)
Which returns:
0 1
0 b c
1 a b
2 a c
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With