I am trying to convert a time series data from long to wide format. The data is given below as follows.
+======+==========+======+======+
| Name | Date | Val1 | Val2 |
+======+==========+======+======+
| A | 1/1/2018 | 1 | 2 |
+------+----------+------+------+
| B | 1/1/2018 | 2 | 3 |
+------+----------+------+------+
| C | 1/1/2018 | 3 | 4 |
+------+----------+------+------+
| D | 1/4/2018 | 4 | 5 |
+------+----------+------+------+
| A | 1/4/2018 | 5 | 6 |
+------+----------+------+------+
| B | 1/4/2018 | 6 | 7 |
+------+----------+------+------+
| C | 1/4/2018 | 7 | 8 |
+------+----------+------+------+
My end goal is to create a pivot table for a date range of 01/01/2018 to 01/04/2018. Since there is no value at dates 01/02/2018 or 01/03/2018 I would expect them to be filled with NaN. For further simplicity this is what my final table would look like:
+---+---------------+---------------+---------------+---------------+---------------+---------------+---------------+---------------+
| | Val1.1/1/2018 | Val2.1/1/2018 | Val1.1/2/2018 | Val2.1/2/2018 | Val1.1/3/2018 | Val2.1/3/2018 | Val1.1/4/2018 | Val2.1/4/2018 |
+---+---------------+---------------+---------------+---------------+---------------+---------------+---------------+---------------+
| A | 1 | 2 | NULL | NULL | NULL | NULL | 5 | 6 |
| B | 2 | 3 | NULL | NULL | NULL | NULL | 6 | 7 |
| C | 3 | 4 | NULL | NULL | NULL | NULL | 7 | 8 |
| D | NULL | NULL | NULL | NULL | NULL | NULL | 4 | 5 |
+---+---------------+---------------+---------------+---------------+---------------+---------------+---------------+---------------+
There are two steps as per my understanding to get above table.
First is to fill data in long format with dates not present in range between 01/01/2018 to 01/04/2018 i.e. is 01/02/2018 and 01/03/2018.
Second and the final step would be to pivot data in wide format.
To achieve the first step I referred to this post.
As per the answer if there are similar dates in multiple rows df.reindex(date_range)would raise following error, ValueError: cannot reindex from a duplicate axis which is true and to overcome that I followed the following piece of code.
df['Date'] = pd.to_datetime(df['Date'], format='%m/%d/%Y')
df.set_index('Date', inplace = True)
date_range = pd.date_range('2018-01-01', '2018-01-04', freq='D')
df = df.loc(date_range)
The above code goves me the following error:
TypeError: unhashable type: 'DatetimeIndex'
I resolved the above issue using this line of code
df = df.loc[date_range,:]
While the I am able to get the desired long format but Python gives a warning as follows:
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
The above warning, I think suggests that my way of achieving the long format table with missing dates is not correct, is that correct? If yes, than how should I go about doing it? Moreover, how would I reach to to wide format table which I want as my final table?
Edit:
I've reached to the pivot table containing dates only '01/01/2018' and '01/04/2018'. Following is the piece of code.
df1 = df.pivot_table(index='Name', columns='Date', aggfunc='sum')
First reindex the Dataframe to add missing dates. Then pivot and combine columns.
idx = pd.MultiIndex.from_product([df.Name.unique(), pd.date_range(df.Date.min(), df.Date.max())])
df = df.set_index(['Name','Date']).reindex(idx).reset_index().rename(columns = {'level_0':'Name', 'level_1':'Date'})
df.Date = df.Date.dt.strftime('%m/%d/%Y')
new_df = df.pivot('Name', 'Date', ['Val1', 'Val2'])
new_df.columns = new_df.columns.map('.'.join)
Val1.01/01/2018 Val1.01/02/2018 Val1.01/03/2018 Val1.01/04/2018 Val2.01/01/2018 Val2.01/02/2018 Val2.01/03/2018 Val2.01/04/2018
Name
A 1.0 NaN NaN 5.0 2.0 NaN NaN 6.0
B 2.0 NaN NaN 6.0 3.0 NaN NaN 7.0
C 3.0 NaN NaN 7.0 4.0 NaN NaN 8.0
D NaN NaN NaN 4.0 NaN NaN NaN 5.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With