I didn't found answer elsewhere, so I need to ask. Probably because I don't know how to correctly name it. (English is not my origin language)
I have large datetime data frame. Time is important here. One column in df has values [Nan, 1, -1]. I need to perform quick calculation to have cumulative sum reseting when value is changing.
Example.
Time sign desire_value
2014-01-24 05:00:00 Nan Nan
2014-01-24 06:00:00 Nan Nan
2014-01-24 07:00:00 Nan Nan
2014-01-24 08:00:00 1 1
2014-01-24 09:00:00 1 2
2014-01-24 10:00:00 1 3
2014-01-24 11:00:00 -1 1
2014-01-24 12:00:00 -1 2
2014-01-24 13:00:00 -1 3
2014-01-24 14:00:00 -1 4
2014-01-24 15:00:00 -1 5
2014-01-24 16:00:00 1 1
2014-01-24 17:00:00 1 2
2014-01-24 18:00:00 1 3
2014-01-24 19:00:00 -1 1
2014-01-24 20:00:00 -1 2
2014-01-24 21:00:00 1 1
2014-01-24 22:00:00 1 2
I have working solution using function, but it is not very efficient.
df['sign_1'] = df['sign'].shift(1)
for index, row in df.iterrows():
if row.sign is None:
df.loc[line, 'desire_value'] = None
elif row.sign == row.sign_1:
acc += 1
df.loc[index, 'desire_value'] = acc
else:
acc = 1
df.loc[index, 'desire_value'] = acc
I cannot find any array based approach. I found that the best way to iterate efficiently in Python is using Cython, but is there more "Python" way to solve this?
The cumsum() method returns a DataFrame with the cumulative sum for each row. The cumsum() method goes through the values in the DataFrame, from the top, row by row, adding the values with the value from the previous row, ending up with a DataFrame where the last row contains the sum of all values for each column.
Calculate Sum of Given Columns To sum given or list of columns then create a list with all columns you wanted and slice the DataFrame with the selected list of columns and use the sum() function. Use df['Sum']=df[col_list]. sum(axis=1) to get the total sum.
Use DataFrame. groupby(). sum() to group rows based on one or multiple columns and calculate sum agg function. groupby() function returns a DataFrameGroupBy object which contains an aggregate function sum() to calculate a sum of a given column for each group.
see the last section here
This is an itertools like groupby
In [86]: v = df['value'].dropna()
The grouper is separated on the group breakpoints; cumsum makes it have separate groups
In [87]: grouper = (v!=v.shift()).cumsum()
In [88]: grouper
Out[88]:
3 1
4 1
5 1
6 2
7 2
8 2
9 2
10 2
11 3
12 3
13 3
14 4
15 4
16 5
17 5
Name: value, dtype: int64
Then just a simple cumsum
In [89]: df.groupby(grouper)['value'].cumsum()
Out[89]:
0 NaN
1 NaN
2 NaN
3 1
4 2
5 3
6 -1
7 -2
8 -3
9 -4
10 -5
11 1
12 2
13 3
14 -1
15 -2
16 1
17 2
dtype: float64
You can certainly .abs()
the above if you do in fact want the absolute values.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With