There is a way to shift a dataframe column dependently on the condition on two other columns? something like:
df["cumulated_closed_value"] = df.groupby("user").['close_cumsum'].shiftWhile(df['close_time']>df['open_time])
I have figured out a way to do this but it's inefficient:
1)Load data and create the column to shift
df=pd.read_csv('data.csv')
df.sort_values(['user','close_time'],inplace=True)
df['close_cumsum']=df.groupby('user')['value'].cumsum()
df.sort_values(['user','open_time'],inplace=True)
print(df)
output:
user open_time close_time value close_cumsum
0 1 2017-01-01 2017-03-01 5 18
1 1 2017-01-02 2017-02-01 6 6
2 1 2017-02-03 2017-02-05 7 13
3 1 2017-02-07 2017-04-01 3 21
4 1 2017-09-07 2017-09-11 1 22
5 2 2018-01-01 2018-02-01 15 15
6 2 2018-03-01 2018-04-01 3 18
2) shift the column with a self-join and some filters
Self-join (this is memory inefficient) df2=pd.merge(df[['user','open_time']],df[['user','close_time','close_cumsum']], on='user')
filter for 'close_time' < 'open_time'. Then get the row with the max close_time
df2=df2[df2['close_time']<df2['open_time']]
idx = df2.groupby(['user','open_time'])['close_time'].transform(max) == df2['close_time']
df2=df2[idx]
3)merge with the original dataset:
df3=pd.merge(df[['user','open_time','close_time','value']],df2[['user','open_time','close_cumsum']],how='left')
print(df3)
output:
user open_time close_time value close_cumsum
0 1 2017-01-01 2017-03-01 5 NaN
1 1 2017-01-02 2017-02-01 6 NaN
2 1 2017-02-03 2017-02-05 7 6.0
3 1 2017-02-07 2017-04-01 3 13.0
4 1 2017-09-07 2017-09-11 1 21.0
5 2 2018-01-01 2018-02-01 15 NaN
6 2 2018-03-01 2018-04-01 3 15.0
There is a more pandas way to get the same result?
Edit: I have added one data line to make the case more clear. My goal is to get the sum of all transactions closed before the opening time of the new transaction
I am using a new para here record the condition df2['close_time']<df2['open_time']
df['New']=((df.open_time-df.close_time.shift()).dt.days>0).shift(-1)
s=df.groupby('user').apply(lambda x : (x['value']*x['New']).cumsum().shift()).reset_index(level=0,drop=True)
s.loc[~(df.New.shift()==True)]=np.nan
df['Cumsum']=s
df
Out[1043]:
user open_time close_time value New Cumsum
0 1 2017-01-01 2017-03-01 5 False NaN
1 1 2017-01-02 2017-02-01 6 True NaN
2 1 2017-02-03 2017-02-05 7 True 6
3 1 2017-02-07 2017-04-01 3 False 13
4 2 2017-01-01 2017-02-01 15 True NaN
5 2 2017-03-01 2017-04-01 3 NaN 15
Update : since op update the question (Data from Gabriel A)
df['New']=df.user.map(df.groupby('user').close_time.apply(lambda x: np.array(x)))
df['New1']=df.user.map(df.groupby('user').value.apply(lambda x: np.array(x)))
df['New2']=[[x>m for m in y] for x,y in zip(df['open_time'],df['New']) ]
df['Yourtarget']=list(map(sum,df['New2']*df['New1'].values))
df.drop(['New','New1','New2'],1)
Out[1376]:
user open_time close_time value Yourtarget
0 1 2016-12-30 2016-12-31 1 0
1 1 2017-01-01 2017-03-01 5 1
2 1 2017-01-02 2017-02-01 6 1
3 1 2017-02-03 2017-02-05 7 7
4 1 2017-02-07 2017-04-01 3 14
5 1 2017-09-07 2017-09-11 1 22
6 2 2018-01-01 2018-02-01 15 0
7 2 2018-03-01 2018-04-01 3 15
I made a modification to you test case that I think you should include. This solution does handle your edit.
import pandas as pd
import numpy as np
df = pd.read_csv("cond_shift.csv")
df
input:
user open_time close_time value
0 1 12/30/2016 12/31/2016 1
1 1 1/1/2017 3/1/2017 5
2 1 1/2/2017 2/1/2017 6
3 1 2/3/2017 2/5/2017 7
4 1 2/7/2017 4/1/2017 3
5 1 9/7/2017 9/11/2017 1
6 2 1/1/2018 2/1/2018 15
7 2 3/1/2018 4/1/2018 3
create columns to shift:
df["open_time"] = pd.to_datetime(df["open_time"])
df["close_time"] = pd.to_datetime(df["close_time"])
df.sort_values(['user','close_time'],inplace=True)
df['close_cumsum']=df.groupby('user')['value'].cumsum()
df.sort_values(['user','open_time'],inplace=True)
df
user open_time close_time value close_cumsum
0 1 2016-12-30 2016-12-31 1 1
1 1 2017-01-01 2017-03-01 5 19
2 1 2017-01-02 2017-02-01 6 7
3 1 2017-02-03 2017-02-05 7 14
4 1 2017-02-07 2017-04-01 3 22
5 1 2017-09-07 2017-09-11 1 23
6 2 2018-01-01 2018-02-01 15 15
7 2 2018-03-01 2018-04-01 3 18
Shift columns (explanation below):
df["cumulated_closed_value"] = df.groupby("user")["close_cumsum"].transform("shift")
condition = ~(df.groupby("user")['close_time'].transform("shift") < df["open_time"])
df.loc[ condition,"cumulated_closed_value" ] = None
df["cumulated_closed_value"] =df.groupby("user")["cumulated_closed_value"].fillna(method="ffill").fillna(0)
df
user open_time close_time value close_cumsum cumulated_closed_value
0 1 2016-12-30 2016-12-31 1 1 0.0
1 1 2017-01-01 2017-03-01 5 19 1.0
2 1 2017-01-02 2017-02-01 6 7 1.0
3 1 2017-02-03 2017-02-05 7 14 7.0
4 1 2017-02-07 2017-04-01 3 22 14.0
5 1 2017-09-07 2017-09-11 1 23 22.0
6 2 2018-01-01 2018-02-01 15 15 0.0
7 2 2018-03-01 2018-04-01 3 18 15.0
All of this has been written is such a way that it's done across all users. I believe the logic is easier if you only focus on one user at a time.
I would still thoroughly test this before you use it. Time intervals are weird and there are a lot of edge cases.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With