There is a way to shift a dataframe column dependently on the condition on two other columns? something like:
df["cumulated_closed_value"] = df.groupby("user").['close_cumsum'].shiftWhile(df['close_time']>df['open_time])
I have figured out a way to do this but it's inefficient:
1)Load data and create the column to shift
df=pd.read_csv('data.csv')
df.sort_values(['user','close_time'],inplace=True)
df['close_cumsum']=df.groupby('user')['value'].cumsum()
df.sort_values(['user','open_time'],inplace=True)
print(df)
output:
   user  open_time close_time  value  close_cumsum
0     1 2017-01-01 2017-03-01      5            18
1     1 2017-01-02 2017-02-01      6             6
2     1 2017-02-03 2017-02-05      7            13
3     1 2017-02-07 2017-04-01      3            21
4     1 2017-09-07 2017-09-11      1            22
5     2 2018-01-01 2018-02-01     15            15
6     2 2018-03-01 2018-04-01      3            18
2) shift the column with a self-join and some filters
Self-join (this is memory inefficient)   df2=pd.merge(df[['user','open_time']],df[['user','close_time','close_cumsum']], on='user')
filter for 'close_time' < 'open_time'. Then get the row with the max close_time
df2=df2[df2['close_time']<df2['open_time']]
idx = df2.groupby(['user','open_time'])['close_time'].transform(max) == df2['close_time']
df2=df2[idx]
3)merge with the original dataset:
df3=pd.merge(df[['user','open_time','close_time','value']],df2[['user','open_time','close_cumsum']],how='left')
print(df3)
output:
   user  open_time close_time  value  close_cumsum
0     1 2017-01-01 2017-03-01      5           NaN
1     1 2017-01-02 2017-02-01      6           NaN
2     1 2017-02-03 2017-02-05      7           6.0
3     1 2017-02-07 2017-04-01      3          13.0
4     1 2017-09-07 2017-09-11      1          21.0
5     2 2018-01-01 2018-02-01     15           NaN
6     2 2018-03-01 2018-04-01      3          15.0
There is a more pandas way to get the same result?
Edit: I have added one data line to make the case more clear. My goal is to get the sum of all transactions closed before the opening time of the new transaction
I am using a new para here record the condition df2['close_time']<df2['open_time']
df['New']=((df.open_time-df.close_time.shift()).dt.days>0).shift(-1)
s=df.groupby('user').apply(lambda x : (x['value']*x['New']).cumsum().shift()).reset_index(level=0,drop=True)
s.loc[~(df.New.shift()==True)]=np.nan
df['Cumsum']=s
df
Out[1043]: 
   user  open_time close_time  value    New Cumsum
0     1 2017-01-01 2017-03-01      5  False    NaN
1     1 2017-01-02 2017-02-01      6   True    NaN
2     1 2017-02-03 2017-02-05      7   True      6
3     1 2017-02-07 2017-04-01      3  False     13
4     2 2017-01-01 2017-02-01     15   True    NaN
5     2 2017-03-01 2017-04-01      3    NaN     15
Update : since op update the question (Data from Gabriel A)
df['New']=df.user.map(df.groupby('user').close_time.apply(lambda x: np.array(x)))
df['New1']=df.user.map(df.groupby('user').value.apply(lambda x: np.array(x)))
df['New2']=[[x>m for m in y] for x,y in zip(df['open_time'],df['New'])  ]
df['Yourtarget']=list(map(sum,df['New2']*df['New1'].values))
df.drop(['New','New1','New2'],1)
Out[1376]: 
   user  open_time close_time  value  Yourtarget
0     1 2016-12-30 2016-12-31      1           0
1     1 2017-01-01 2017-03-01      5           1
2     1 2017-01-02 2017-02-01      6           1
3     1 2017-02-03 2017-02-05      7           7
4     1 2017-02-07 2017-04-01      3          14
5     1 2017-09-07 2017-09-11      1          22
6     2 2018-01-01 2018-02-01     15           0
7     2 2018-03-01 2018-04-01      3          15
                        I made a modification to you test case that I think you should include. This solution does handle your edit.
import pandas as pd
import numpy as np
df = pd.read_csv("cond_shift.csv")
df
input:
   user open_time   close_time  value
0   1   12/30/2016  12/31/2016  1
1   1   1/1/2017    3/1/2017    5
2   1   1/2/2017    2/1/2017    6
3   1   2/3/2017    2/5/2017    7
4   1   2/7/2017    4/1/2017    3
5   1   9/7/2017    9/11/2017   1
6   2   1/1/2018    2/1/2018    15
7   2   3/1/2018    4/1/2018    3
create columns to shift:
df["open_time"] = pd.to_datetime(df["open_time"])
df["close_time"] = pd.to_datetime(df["close_time"])
df.sort_values(['user','close_time'],inplace=True)
df['close_cumsum']=df.groupby('user')['value'].cumsum()
df.sort_values(['user','open_time'],inplace=True)
df
   user open_time   close_time  value   close_cumsum
0   1   2016-12-30  2016-12-31  1       1
1   1   2017-01-01  2017-03-01  5       19
2   1   2017-01-02  2017-02-01  6       7
3   1   2017-02-03  2017-02-05  7       14
4   1   2017-02-07  2017-04-01  3       22
5   1   2017-09-07  2017-09-11  1       23
6   2   2018-01-01  2018-02-01  15      15
7   2   2018-03-01  2018-04-01  3       18
Shift columns (explanation below):
df["cumulated_closed_value"] = df.groupby("user")["close_cumsum"].transform("shift")
condition = ~(df.groupby("user")['close_time'].transform("shift") < df["open_time"])
df.loc[ condition,"cumulated_closed_value" ] = None
df["cumulated_closed_value"] =df.groupby("user")["cumulated_closed_value"].fillna(method="ffill").fillna(0)
df
user    open_time   close_time  value   close_cumsum    cumulated_closed_value
0   1   2016-12-30  2016-12-31  1       1               0.0
1   1   2017-01-01  2017-03-01  5       19              1.0
2   1   2017-01-02  2017-02-01  6       7               1.0
3   1   2017-02-03  2017-02-05  7       14              7.0
4   1   2017-02-07  2017-04-01  3       22              14.0
5   1   2017-09-07  2017-09-11  1       23              22.0
6   2   2018-01-01  2018-02-01  15      15              0.0
7   2   2018-03-01  2018-04-01  3       18              15.0
All of this has been written is such a way that it's done across all users. I believe the logic is easier if you only focus on one user at a time.
I would still thoroughly test this before you use it. Time intervals are weird and there are a lot of edge cases.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With