I have the following DataFrame:
df = pd.DataFrame({
'Branch' : 'A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Joe Joe Carl'.split(),
'Quantity': [1,3,5,8,9,3],
'Date' : [
DT.datetime(2013,1,1,13,0),
DT.datetime(2013,1,1,13,5),
DT.datetime(2013,10,1,20,0),
DT.datetime(2013,10,2,10,0),
DT.datetime(2013,12,2,12,0),
DT.datetime(2013,12,2,14,0),
]})
from pandas.tseries.resample import TimeGrouper
How can I group this data by the Branch and on a 20 day period using TimeGrouper?
All my previous attempts failed, because I could not combine TimeGrouper with another argument in the groupby function.
I would deeply appreciate your help.
Thank you
Andy
You can now use a TimeGrouper with another column (as of IIRC pandas version 0.14):
In [11]: df1 = df.set_index('Date')
In [12]: g = df1.groupby([pd.TimeGrouper('20D'), 'Branch'])
In [13]: g.sum()
Out[13]:
Quantity
Date Branch
2013-01-01 13:00:00 A 4
2013-09-18 13:00:00 A 13
2013-11-17 13:00:00 A 9
B 3
From the discussion here: https://github.com/pydata/pandas/issues/3791
In [38]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').sum())
Out[38]:
Quantity
Branch
2013-01-31 A 4
2014-01-31 A 22
B 3
And a bit more complicated question
In [55]: def testf(df):
....: if (df['Buyer'] == 'Mark').sum() > 0:
....: return Series(dict(quantity = df['Quantity'].sum(), buyer = 'mark'))
....: return Series(dict(quantity = df['Quantity'].sum()*100, buyer = 'other'))
....:
In [56]: df.set_index('Date').groupby(pd.TimeGrouper('6M')).apply(lambda x: x.groupby('Branch').apply(testf))
Out[56]:
buyer quantity
Branch
2013-01-31 A mark 4
2014-01-31 A other 2200
B other 300
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With