Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas cast all object columns to category

I want to have ha elegant function to cast all object columns in a pandas data frame to categories

df[x] = df[x].astype("category") performs the type cast df.select_dtypes(include=['object']) would sub-select all categories columns. However this results in a loss of the other columns / a manual merge is required. Is there a solution which "just works in place" or does not require a manual cast?

edit

I am looking for something similar as http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.convert_objects.html for a conversion to categorical data

like image 256
Georg Heiler Avatar asked Oct 06 '16 20:10

Georg Heiler


People also ask

How do I cast columns in pandas?

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types.

What is Astype () in Python?

The astype() method returns a new DataFrame where the data types has been changed to the specified type. You can cast the entire DataFrame to one specific data type, or you can use a Python Dictionary to specify a data type for each column, like this: { 'Duration': 'int64', 'Pulse' : 'float', 'Calories': 'int64' }

What is Tolist () in pandas?

tolist()[source] Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns list.


3 Answers

use apply and pd.Series.astype with dtype='category'

Consider the pd.DataFrame df

df = pd.DataFrame(dict(
        A=[1, 2, 3, 4],
        B=list('abcd'),
        C=[2, 3, 4, 5],
        D=list('defg')
    ))
df

enter image description here

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A    4 non-null int64
B    4 non-null object
C    4 non-null int64
D    4 non-null object
dtypes: int64(2), object(2)
memory usage: 200.0+ bytes

Lets use select_dtypes to include all 'object' types to convert and recombine with a select_dtypes to exclude them.

df = pd.concat([
        df.select_dtypes([], ['object']),
        df.select_dtypes(['object']).apply(pd.Series.astype, dtype='category')
        ], axis=1).reindex_axis(df.columns, axis=1)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 4 columns):
A    4 non-null int64
B    4 non-null category
C    4 non-null int64
D    4 non-null category
dtypes: category(2), int64(2)
memory usage: 208.0 bytes
like image 55
piRSquared Avatar answered Sep 28 '22 02:09

piRSquared


I think that this is a more elegant way:

df = pd.DataFrame(dict(
        A=[1, 2, 3, 4],
        B=list('abcd'),
        C=[2, 3, 4, 5],
        D=list('defg')
    ))

df.info()

df.loc[:, df.dtypes == 'object'] =\
    df.select_dtypes(['object'])\
    .apply(lambda x: x.astype('category'))

df.info()
like image 24
KG in Chicago Avatar answered Sep 28 '22 01:09

KG in Chicago


Wish I could add this as a comment, but can't.

The accepted answer doesn't work for pandas version 0.25 and higher. Use .reindex instead of reindex_axis. See here for more information: https://github.com/scikit-hep/root_pandas/issues/82

like image 35
a Data Head Avatar answered Sep 28 '22 02:09

a Data Head