I have the following data frame my_df
:
team member
--------------------
A Mary
B John
C Amy
A Dan
B Dave
D Paul
B Alex
A Mary
D Mary
I want the new output the new data frame new_df
as:
team members number
--------------------------------------
A [Mary,Dan] 2
B [John,Dave,Alex] 3
C [Amy] 1
D [Paul,Mary] 2
I am wondering is there any existing pandas function can perform the above task? Thanks!
using groupby
pd.concat
g = df.groupby('team').member
pd.concat([g.apply(list), g.count()], axis=1, keys=['members', 'number'])
agg
g = df.groupby('team').member
g.agg(dict(members=lambda x: list(x), number='count'))
members number
team
A [Mary, Dan] 2
B [John, Dave, Alex] 3
C [Amy] 1
D [Paul] 1
Another option here:
(df.groupby("team", as_index=False).member
.agg({"member": lambda x: list(x), "count": "count"}))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With