I have a pandas dataframe like the following:
A              B
US,65,AMAZON   2016
US,65,EBAY     2016
My goal is to get to look like this:
A              B      country    code    com
US.65.AMAZON   2016   US         65      AMAZON
US.65.AMAZON   2016   US         65      EBAY
I know this question has been asked before here and here but none of them works for me. I have tried:
df['country','code','com'] = df.Field.str.split('.')
and
df2 = pd.DataFrame(df.Field.str.split('.').tolist(),columns = ['country','code','com','A','B'])
Am I missing something? Any help is much appreciated.
You can use split with parameter expand=True and add one [] to left side:
df[['country','code','com']] = df.A.str.split(',', expand=True)
Then replace , to .:
df.A = df.A.str.replace(',','.')
print (df)
              A     B country code     com
0  US.65.AMAZON  2016      US   65  AMAZON
1    US.65.EBAY  2016      US   65    EBAY
Another solution with DataFrame constructor if there are no NaN values:
df[['country','code','com']] = pd.DataFrame([ x.split(',') for x in df['A'].tolist() ])
df.A = df.A.str.replace(',','.')
print (df)
              A     B country code     com
0  US.65.AMAZON  2016      US   65  AMAZON
1    US.65.EBAY  2016      US   65    EBAY
Also you can use column names in constructor, but then concat is necessary:
df1=pd.DataFrame([x.split(',') for x in df['A'].tolist()],columns= ['country','code','com'])
df.A = df.A.str.replace(',','.')
df = pd.concat([df, df1], axis=1)
print (df)
              A     B country code     com
0  US.65.AMAZON  2016      US   65  AMAZON
1    US.65.EBAY  2016      US   65    EBAY
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With