Consider below df:
              IA1  IA2  IA3
Name Subject               
Abc  DS        45   43   34
     DMS       43   23   45
     ADA       32   46   36
Bcd  BA        45   35   37
     EAD       23   45   12
     DS        23   35   43
Cdf  EAD       34   33   23
     ADA       12   34   25
How can I add an empty row after each Name index?
Expected output:
              IA1  IA2  IA3
Name Subject               
Abc  DS        45   43   34
     DMS       43   23   45
     ADA       32   46   36
Bcd  BA        45   35   37
     EAD       23   45   12
     DS        23   35   43
Cdf  EAD       34   33   23
     ADA       12   34   25
     
                You can also insert a new row to an existing Pandas Dataframe using numpy. insert(). The major advantage of using numpy. insert() to insert a new row to the Pandas Dataframe is that you can insert the new row at an arbitrary or a desired position/index in the dataframe by declaring the desired index of the row in np.
from_tuples() function is used to convert list of tuples to MultiIndex. It is one of the several ways in which we construct a MultiIndex.
pandas. Index is a basic object that stores axis labels for all pandas objects. DataFrame is a two-dimensional data structure, immutable, heterogeneous tabular data structure with labeled axis rows, and columns.
Use custom function for add empty rows in GroupBy.apply:
def f(x):
    x.loc[('', ''), :] = ''
    return x
Or:
def f(x):
    return x.append(pd.DataFrame('', columns=df.columns, index=[(x.name, '')]))
df = df.groupby(level=0, group_keys=False).apply(f)
print (df)
             IA1 IA2 IA3
Name Subject            
Abc  DS       45  43  34
     DMS      43  23  45
     ADA      32  46  36
                        
Bcd  BA       45  35  37
     EAD      23  45  12
     DS       23  35  43
                        
Cdf  EAD      34  33  23
     ADA      12  34  25
                        
                        Adding another way using df.reindex and fill_value as '' after  using pd.MultiIndex.from_product and Index.union and then sorting it.
idx = df.index.union(pd.MultiIndex.from_product((df.index.levels[0],[''])),sort=False)
out = df.reindex(sorted(idx,key=lambda x: x[0]),fill_value='')
print(out)
             IA1 IA2 IA3
Name Subject            
Abc  DS       45  43  34
     DMS      43  23  45
     ADA      32  46  36
                        
Bcd  BA       45  35  37
     EAD      23  45  12
     DS       23  35  43
                        
Cdf  EAD      34  33  23
     ADA      12  34  25
 
We use sort=False when using Index.union the index so order is retained , then using sorted on the first element returns:
sorted(idx,key=lambda x:x[0])
[('Abc', 'DS'),
 ('Abc', 'DMS'),
 ('Abc', 'ADA'),
 ('Abc', ''),
 ('Bcd', 'BA'),
 ('Bcd', 'EAD'),
 ('Bcd', 'DS'),
 ('Bcd', ''),
 ('Cdf', 'EAD'),
 ('Cdf', 'ADA'),
 ('Cdf', '')]
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With