Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Panda rolling window percentile rank

I am trying to calculate the percentile rank of data by column within a rolling window.

test=pd.DataFrame(np.random.randn(20,3),pd.date_range('1/1/2000',periods=20),['A','B','C'])

test
Out[111]: 
                   A         B         C
2000-01-01 -0.566992 -1.494799  0.462330
2000-01-02 -0.550769 -0.699104  0.767778
2000-01-03 -0.270597  0.060836  0.057195
2000-01-04 -0.583784 -0.546418 -0.557850
2000-01-05  0.294073 -2.326211  0.262098
2000-01-06 -1.122543 -0.116279 -0.003088
2000-01-07  0.121387  0.763100  3.503757
2000-01-08  0.335564  0.076304  2.021757
2000-01-09  0.403170  0.108256  0.680739
2000-01-10 -0.254558 -0.497909 -0.454181
2000-01-11  0.167347  0.459264 -1.247459
2000-01-12 -1.243778  0.858444  0.338056
2000-01-13 -1.070655  0.924808  0.080867
2000-01-14 -1.175651 -0.559712 -0.372584
2000-01-15 -0.216708 -0.116188  0.511223
2000-01-16  0.597171  0.205529 -0.728783
2000-01-17 -0.624469  0.592436  0.832100
2000-01-18  0.259269  0.665585  0.126534
2000-01-19  1.150804  0.575759 -1.335835
2000-01-20 -0.909525  0.500366  2.120933

I tried to use .rolling with .apply but I am missing something.

pctrank = lambda x: x.rank(pct=True)
rollingrank=test.rolling(window=10,centre=False).apply(pctrank)

For column A the final value would be the percentile rank of -0.909525 within the length=10 window from 2000-01-11 to 2000-01-20. Any ideas?

like image 990
user6435943 Avatar asked Aug 09 '16 16:08

user6435943


People also ask

How do you find your percentile rank in pandas?

We will use the rank() function with the argument pct = True to find the percentile rank.

How do you get 50th percentile in pandas?

By default, Pandas will use a parameter of q=0.5 , which will generate the 50th percentile.

How do you find the 10th percentile in pandas?

groupby('Category'). field_A. quantile(0.1) . That will return the 10th percentile for each group of Category .

What is rolling average in pandas?

A moving average, also called a rolling or running average, is used to analyze the time-series data by calculating averages of different subsets of the complete dataset. Since it involves taking the average of the dataset over time, it is also called a moving mean (MM) or rolling mean.


1 Answers

The easiest option would be to do something like this:

from scipy import stats
# 200 is the window size

dataset[name] =  dataset[name].rolling(200).apply(lambda x: stats.percentileofscore(x, x[-1]))
like image 116
user3505444 Avatar answered Oct 16 '22 04:10

user3505444