My challenge is to overlay a custom line function graph over a scatter plot I already have, the code looks like follows:
base_beta = results.params
X_plot = np.linspace(0,1,400)
g = sns.FacetGrid(data, size = 6)
g = g.map(plt.scatter, "usable_area", "price", edgecolor="w")
Where base_beta
is only a constant, and then one coefficient. Basically, I want to overlay a function that plots a line y = constant + coefficient * x
I tried to overlay a line using this but it did not work.
g = g.map_dataframe(plt.plot, X_plot, X_plot*base_beta[1]+base_beta[0], 'r-')
plt.show()
The current scatter plot looks like so:
Can any one help me with this?
--ATTEMPT 1
base_beta = results.params
X_plot = np.linspace(0,1,400)
Y_plot = base_beta [0] + base_beta[1]*X_plot
g = sns.FacetGrid(data, size = 6)
g = g.map(plt.scatter, "usable_area", "price", edgecolor="w")
plt.plot(X_plot, Y_plot, color='r')
plt.show()
Resulted in the same graph but no line:
Seaborn's refline() function to add horizontal/vertical lines in subplots. To add a horizontal and vertical line we can use Seaborn's refline() function with x and y y co-ordinates for the locations of the horizontal and vertical lines.
You can just call plt.plot
to plot a line over the data.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.DataFrame()
data['usable_area'] = 5*np.random.random(200)
data['price'] = 10*data['usable_area']+10*np.random.random(200)
X_plot = np.linspace(0, 7, 100)
Y_plot = 10*X_plot+5
g = sns.FacetGrid(data, size = 6)
g = g.map(plt.scatter, "usable_area", "price", edgecolor="w")
plt.plot(X_plot, Y_plot, color='r')
plt.show()
Produces:
seaborn.relplot
or seaborn.regplot
instead of directly using seaborn.FacetGrid
python 3.8.12
, pandas 1.3.3
, matplotlib 3.4.3
, seaborn 0.11.2
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# create a dataframe with sample x and y
np.random.seed(365)
x = 5*np.random.random(200)
df = pd.DataFrame({'x': x, 'y': 10*x+10*np.random.random(200)})
# add custom line to the dataframe
base_beta = [10, 5]
df['y_line'] = base_beta[0] + base_beta[1]*df.x
display(df.head())
x y y_line
0 4.707279 50.634968 33.536394
1 3.208014 33.890507 26.040068
2 3.423052 37.853276 27.115262
3 2.942810 29.899257 24.714052
4 2.719436 36.932170 23.597180
sns.relplot
with .map
or .map_dataframe
sns.lineplot
) to each facet of the figure-level plot.p1 = sns.relplot(kind='scatter', x='x', y='y', data=df, height=3.5, aspect=1.5)
p1.map_dataframe(sns.lineplot, 'x', 'y_line', color='g')
sns.scatterplot
with sns.lineplot
fig, ax = plt.subplots(figsize=(6, 4))
p1 = sns.scatterplot(data=df, x='x', y='y', ax=ax)
p2 = sns.lineplot(data=df, x='x', y='y_line', color='g', ax=ax)
seaborn.lmplot
for figure-level regression plotseaborn.regplot
for an axes-level regression plot.sns.lmplot
p1 = sns.lmplot(data=df, x='x', y='y', line_kws={'color': 'g'}, height=3.5, aspect=1.5)
sns.regplot
p2 = sns.regplot(data=df, x='x', y='y', line_kws={'color': 'g'})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With