This question asks about ordering a bar graph according to an unsummarized table. I have a slightly different situation. Here's part of my original data:
experiment,pvs_id,src,hrc,mqs,mcs,dmqs,imcs
dna-wm,0,7,9,4.454545454545454,1.4545454545454546,1.4545454545454541,4.3939393939393945
dna-wm,1,7,4,2.909090909090909,1.8181818181818181,0.09090909090909083,3.9090909090909087
dna-wm,2,7,1,4.818181818181818,1.4545454545454546,1.8181818181818183,4.3939393939393945
dna-wm,3,7,8,3.4545454545454546,1.5454545454545454,0.4545454545454546,4.272727272727273
dna-wm,4,7,10,3.8181818181818183,1.9090909090909092,0.8181818181818183,3.7878787878787876
dna-wm,5,7,7,3.909090909090909,1.9090909090909092,0.9090909090909092,3.7878787878787876
dna-wm,6,7,0,4.909090909090909,1.3636363636363635,1.9090909090909092,4.515151515151516
dna-wm,7,7,3,3.909090909090909,1.7272727272727273,0.9090909090909092,4.030303030303029
dna-wm,8,7,11,3.6363636363636362,1.5454545454545454,0.6363636363636362,4.272727272727273
I only need a few variables from this, namely mqs
and imcs
, grouped by their pvs_id
, so I create a new table:
m = melt(t, id.var="pvs_id", measure.var=c("mqs","imcs"))
I can plot this as a bar graph where one can see the correlation between MQS and IMCS.
ggplot(m, aes(x=pvs_id, y=value))
+ geom_bar(aes(fill=variable), position="dodge", stat="identity")
However, I'd like the resulting bars to be ordered by the MQS value, from left to right, in decreasing order. The IMCS values should be ordered with those, of course.
How can I accomplish that? Generally, given any molten dataframe — which seems useful for graphing in ggplot2 and today's the first time I've stumbled over it — how do I specify the order for one variable?
Reordering in ggplot is done using theme() function. Within this, we use axis. text. x with the appropriate value to re-order accordingly.
To reorder the bar graph in descending or ascending order, use the function reorder( ). There is no need to rename the data frame.
It's all in making
pvs_id
a factor and supplying the appropriate levels to it:
dat$pvs_id <- factor(dat$pvs_id, levels = dat[order(-dat$mqs), 2])
m = melt(dat, id.var="pvs_id", measure.var=c("mqs","imcs"))
ggplot(m, aes(x=pvs_id, y=value))+
geom_bar(aes(fill=variable), position="dodge", stat="identity")
This produces the following plot:
EDIT:
Well since pvs_id
was numeric it is treated in an ordered fashion. Where as if you have a factor no order is assumed. So even though you have numeric labels pvs_id
is actually a factor (nominal). And as far as dat[order(-dat$mqs), 2]
is concerned the order function with a negative sign orders the data frame from largest to smallest along the variable mqs
. But you're interested in that order for the pvs_id
variable so you index that column which is the second column. If you tear that apart you'll see it gives you:
> dat[order(-dat$mqs), 2]
[1] 6 2 0 5 7 4 8 3 1
Now you supply that to the levels
argument of factor
and this orders the factor as you want it.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With