I have four square matrices with dimension 3Nx3N, called A, B, C and D.
I want to combine them in a single matrix. The code with for loops is the following:
import numpy
N = 3
A = numpy.random.random((3*N, 3*N))
B = numpy.random.random((3*N, 3*N))
C = numpy.random.random((3*N, 3*N))
D = numpy.random.random((3*N, 3*N))
final = numpy.zeros((6*N, 6*N))
for i in range(N):
for j in range(N):
for k in range(3):
for l in range(3):
final[6*i + k][6*j + l] = A[3*i+k][3*j+l]
final[6*i + k + 3][6*j + l + 3] = B[3*i+k][3*j+l]
final[6*i + k + 3][6*j + l] = C[3*i+k][3*j+l]
final[6*i + k][6*j + l + 3] = D[3*i+k][3*j+l]
Is it possible to write the previous for loops in a numpythonic way?
Numpy has a function to compute the combination of 2 or more Numpy arrays named as “numpy. meshgrid()“. This function is used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing.
NumPy is a general-purpose array-processing package. It provides a high-performance multidimensional array object and tools for working with these arrays.
Appending to numpy arrays is very inefficient. This is because the interpreter needs to find and assign memory for the entire array at every single step. Depending on the application, there are much better strategies. If you know the length in advance, it is best to pre-allocate the array using a function like np.
Great problem for practicing array-slicing
into multi-dimensional tensors/arrays!
We will initialize the output array as a multi-dimensional 6D
array and simply slice it and assign the four arrays being reshaped as 4D
arrays. The intention is avoid any stacking/concatenating as those would be expensive specially when working with large arrays by instead working with reshaping of input arrays, which would be merely views.
Here's the implementation -
out = np.zeros((N,2,3,N,2,3),dtype=A.dtype)
out[:,0,:,:,0,:] = A.reshape(N,3,N,3)
out[:,0,:,:,1,:] = D.reshape(N,3,N,3)
out[:,1,:,:,0,:] = C.reshape(N,3,N,3)
out[:,1,:,:,1,:] = B.reshape(N,3,N,3)
out.shape = (6*N,6*N)
Just to explain a bit more, we had :
|------------------------ Axes for selecting A, B, C, D
np.zeros((N,2,3,N,2,3),dtype=A.dtype)
|------------------------- Axes for selecting A, B, C, D
Thus, those two axes (second and fifth) of lengths (2x2) = 4
were used to select between the four inputs.
Runtime test
Approaches -
def original_app(A, B, C, D):
final = np.zeros((6*N,6*N),dtype=A.dtype)
for i in range(N):
for j in range(N):
for k in range(3):
for l in range(3):
final[6*i + k][6*j + l] = A[3*i+k][3*j+l]
final[6*i + k + 3][6*j + l + 3] = B[3*i+k][3*j+l]
final[6*i + k + 3][6*j + l] = C[3*i+k][3*j+l]
final[6*i + k][6*j + l + 3] = D[3*i+k][3*j+l]
return final
def slicing_app(A, B, C, D):
out = np.zeros((N,2,3,N,2,3),dtype=A.dtype)
out[:,0,:,:,0,:] = A.reshape(N,3,N,3)
out[:,0,:,:,1,:] = D.reshape(N,3,N,3)
out[:,1,:,:,0,:] = C.reshape(N,3,N,3)
out[:,1,:,:,1,:] = B.reshape(N,3,N,3)
return out.reshape(6*N,6*N)
Timings and verification -
In [147]: # Setup input arrays
...: N = 200
...: A = np.random.randint(11,99,(3*N,3*N))
...: B = np.random.randint(11,99,(3*N,3*N))
...: C = np.random.randint(11,99,(3*N,3*N))
...: D = np.random.randint(11,99,(3*N,3*N))
...:
In [148]: np.allclose(slicing_app(A, B, C, D), original_app(A, B, C, D))
Out[148]: True
In [149]: %timeit original_app(A, B, C, D)
1 loops, best of 3: 1.63 s per loop
In [150]: %timeit slicing_app(A, B, C, D)
100 loops, best of 3: 9.26 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With