Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Optimizing a branch for a known more-common path

Please consider the following piece of code:

void error_handling();
bool method_impl();

bool method()
{
    const bool res = method_impl();
    if (res == false) {
        error_handling();
        return false;
    }
    return true;
}

I know method_impl() will return true 99.999% (yes, three decimal places) of the time, but my compiler doesn't. method() is partially critical in term of time-consumption.

  1. Should I rewrite method() (and make it less readable) to ensure a jump may only occur when method_impl() returns false? If yes, how?
  2. Should I let the compiler do the work for me?
  3. Should I let the branch prediction of my CPU do the work for me?
like image 739
YSC Avatar asked Mar 11 '16 10:03

YSC


Video Answer


3 Answers

Following other answers' suggestions, I benchmarked the solutions. If you consider upvoting this answer, please upvote the others too.

Benchmark code

#include <iostream>
#include <iomanip>
#include <string>

// solutions
#include <ctime>

// benchmak
#include <limits>
#include <random>
#include <chrono>
#include <algorithm>
#include <functional>

//
// Solutions
//
namespace
{
    volatile std::time_t near_futur = -1;
    void error_handling() { std::cerr << "error\n"; }
    bool method_impl() { return std::time(NULL) != near_futur; }

    bool method_no_builtin()
    {
        const bool res = method_impl();
        if (res == false) {
            error_handling();
            return false;
        }
        return true;
    }

    bool method_builtin()
    {
        const bool res = method_impl();
        if (__builtin_expect(res, 1) == false) {
            error_handling();
            return false;
        }
        return true;
    }

    bool method_builtin_incorrect()
    {
        const bool res = method_impl();
        if (__builtin_expect(res, 0) == false) {
            error_handling();
            return false;
        }
        return true;
    }

    bool method_rewritten()
    {
        const bool res = method_impl();
        if (res == true) {
            return true;
        } else {
            error_handling();
            return false;
        }
    }
}

//
// benchmark
//
constexpr std::size_t BENCHSIZE = 10'000'000;
class Clock
{
    std::chrono::time_point<std::chrono::steady_clock> _start;

public:
    static inline std::chrono::time_point<std::chrono::steady_clock> now() { return std::chrono::steady_clock::now(); }

    Clock() : _start(now())
    {
    }

    template<class DurationUnit>
    std::size_t end()
    {
        return std::chrono::duration_cast<DurationUnit>(now() - _start).count();
    }
};

//
// Entry point
//
int main()
{
    {
        Clock clock;
        bool result = true;
        for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
        {
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
            result &= method_no_builtin();
        }
        const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
        std::cout << std::setw(40) << "method_no_builtin(): " << std::setprecision(3) << unit_time << " ns\n";
    }
    {
        Clock clock;
        bool result = true;
        for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
        {
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
            result &= method_builtin();
        }
        const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
        std::cout << std::setw(40) << "method_builtin(): " << std::setprecision(3) << unit_time << " ns\n";
    }
    {
        Clock clock;
        bool result = true;
        for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
        {
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
            result &= method_builtin_incorrect();
        }
        const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
        std::cout << std::setw(40) << "method_builtin_incorrect(): " << std::setprecision(3) << unit_time << " ns\n";
    }
    {
        Clock clock;
        bool result = true;
        for (std::size_t i = 0 ; i < BENCHSIZE ; ++i)
        {
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
            result &= method_rewritten();
        }
        const double unit_time = clock.end<std::chrono::nanoseconds>() / static_cast<double>(BENCHSIZE);
        std::cout << std::setw(40) << "method_rewritten(): " << std::setprecision(3) << unit_time << " ns\n";
    }
}

Benchmark results

g++ -std=c++14 -O2 -Wall -Wextra -Werror main.cpp

               method_no_builtin(): 42.8 ns
                  method_builtin(): 44.4 ns
        method_builtin_incorrect(): 51.4 ns
                method_rewritten(): 39.3 ns

Demo

g++ -std=c++14 -O3 -Wall -Wextra -Werror main.cpp

               method_no_builtin(): 32.3 ns
                  method_builtin(): 31.1 ns
        method_builtin_incorrect(): 35.6 ns
                method_rewritten(): 30.5 ns

Demo

Conclusion

The difference between those optimizations are too small to come to any conclusion other than: if there is a performance gain to find in optimizing a branch for a known more common path, this gain is too small to be worth the trouble and the loss in readability.

like image 179
YSC Avatar answered Oct 23 '22 14:10

YSC


You could suggest the compiler that the method_impl() will return true:

void error_handling();
bool method_impl();

bool method()
{
    const bool res = method_impl();
    if (__builtin_expect (res, 0) == false) {
        error_handling();
        return false;
    }
    return true;
}

This will work in GCC.

like image 29
Tamas Ionut Avatar answered Oct 23 '22 12:10

Tamas Ionut


The underlying hardware already performs this optimizations. It will "fail" to predict it the first times, but after it will hit the correct option en.wikipedia.org/wiki/Branch_predictor.

You can try applying the GCC extension and check if it is faster with it or not, but I think you will barely see any difference with it and without it. The branch prediction is applied always, it is not something you enable

like image 44
Nadir Avatar answered Oct 23 '22 14:10

Nadir