I wrote a method to calculate the cosine distance between two arrays:
def cosine_distance(a, b):
if len(a) != len(b):
return False
numerator = 0
denoma = 0
denomb = 0
for i in range(len(a)):
numerator += a[i]*b[i]
denoma += abs(a[i])**2
denomb += abs(b[i])**2
result = 1 - numerator / (sqrt(denoma)*sqrt(denomb))
return result
Running it can be very slow on a large array. Is there an optimized version of this method that would run faster?
Update: I've tried all the suggestions to date, including scipy. Here's the version to beat, incorporating suggestions from Mike and Steve:
def cosine_distance(a, b):
if len(a) != len(b):
raise ValueError, "a and b must be same length" #Steve
numerator = 0
denoma = 0
denomb = 0
for i in range(len(a)): #Mike's optimizations:
ai = a[i] #only calculate once
bi = b[i]
numerator += ai*bi #faster than exponent (barely)
denoma += ai*ai #strip abs() since it's squaring
denomb += bi*bi
result = 1 - numerator / (sqrt(denoma)*sqrt(denomb))
return result
If you can use SciPy, you can use cosine
from spatial.distance
:
http://docs.scipy.org/doc/scipy/reference/spatial.distance.html
If you can't use SciPy, you could try to obtain a small speedup by rewriting your Python (EDIT: but it didn't work out like I thought it would, see below).
from itertools import izip
from math import sqrt
def cosine_distance(a, b):
if len(a) != len(b):
raise ValueError, "a and b must be same length"
numerator = sum(tup[0] * tup[1] for tup in izip(a,b))
denoma = sum(avalue ** 2 for avalue in a)
denomb = sum(bvalue ** 2 for bvalue in b)
result = 1 - numerator / (sqrt(denoma)*sqrt(denomb))
return result
It is better to raise an exception when the lengths of a and b are mismatched.
By using generator expressions inside of calls to sum()
you can calculate your values with most of the work being done by the C code inside of Python. This should be faster than using a for
loop.
I haven't timed this so I can't guess how much faster it might be. But the SciPy code is almost certainly written in C or C++ and it should be about as fast as you can get.
If you are doing bioinformatics in Python, you really should be using SciPy anyway.
EDIT: Darius Bacon timed my code and found it slower. So I timed my code and... yes, it is slower. The lesson for all: when you are trying to speed things up, don't guess, measure.
I am baffled as to why my attempt to put more work on the C internals of Python is slower. I tried it for lists of length 1000 and it was still slower.
I can't spend any more time on trying to hack the Python cleverly. If you need more speed, I suggest you try SciPy.
EDIT: I just tested by hand, without timeit. I find that for short a and b, the old code is faster; for long a and b, the new code is faster; in both cases the difference is not large. (I'm now wondering if I can trust timeit on my Windows computer; I want to try this test again on Linux.) I wouldn't change working code to try to get it faster. And one more time I urge you to try SciPy. :-)
(I originally thought) you're not going to speed it up a lot without breaking out to C (like numpy or scipy) or changing what you compute. But here's how I'd try that, anyway:
from itertools import imap
from math import sqrt
from operator import mul
def cosine_distance(a, b):
assert len(a) == len(b)
return 1 - (sum(imap(mul, a, b))
/ sqrt(sum(imap(mul, a, a))
* sum(imap(mul, b, b))))
It's roughly twice as fast in Python 2.6 with 500k-element arrays. (After changing map to imap, following Jarret Hardie.)
Here's a tweaked version of the original poster's revised code:
from itertools import izip
def cosine_distance(a, b):
assert len(a) == len(b)
ab_sum, a_sum, b_sum = 0, 0, 0
for ai, bi in izip(a, b):
ab_sum += ai * bi
a_sum += ai * ai
b_sum += bi * bi
return 1 - ab_sum / sqrt(a_sum * b_sum)
It's ugly, but it does come out faster. . .
Edit: And try Psyco! It speeds up the final version by another factor of 4. How could I forget?
No need to take abs()
of a[i]
and b[i]
if you're squaring it.
Store a[i]
and b[i]
in temporary variables, to avoid doing the indexing more than once.
Maybe the compiler can optimize this, but maybe not.
Check into the **2
operator. Is it simplifying it into a multiply, or is it using a general power function (log - multiply by 2 - antilog).
Don't do sqrt twice (though the cost of that is small). Do sqrt(denoma * denomb)
.
Similar to Darius Bacon's answer, I've been toying with operator and itertools to produce a faster answer. The following seems to be 1/3 faster on a 500-item array according to timeit:
from math import sqrt
from itertools import imap
from operator import mul
def op_cosine(a, b):
dot_prod = sum(imap(mul, a, b))
a_veclen = sqrt(sum(i ** 2 for i in a))
b_veclen = sqrt(sum(i ** 2 for i in b))
return 1 - dot_prod / (a_veclen * b_veclen)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With