I am attempting to parallelize the below loop with an OpenMP reduction;
#define EIGEN_DONT_PARALLELIZE
#include <iostream>
#include <cmath>
#include <string>
#include <eigen3/Eigen/Dense>
#include <eigen3/Eigen/Eigenvalues>
#include <omp.h>
using namespace Eigen;
using namespace std;
VectorXd integrand(double E)
{
VectorXd answer(500000);
double f = 5.*E + 32.*E*E*E*E;
for (int j = 0; j !=50; j++)
answer[j] =j*f;
return answer;
}
int main()
{
omp_set_num_threads(4);
double start = 0.;
double end = 1.;
int n = 100;
double h = (end - start)/(2.*n);
VectorXd result(500000);
result.fill(0.);
double E = start;
result = integrand(E);
#pragma omp parallel
{
#pragma omp for nowait
for (int j = 1; j <= n; j++){
E = start + (2*j - 1.)*h;
result = result + 4.*integrand(E);
if (j != n){
E = start + 2*j*h;
result = result + 2.*integrand(E);
}
}
}
for (int i=0; i <50 ; ++i)
cout<< i+1 << " , "<< result[i] << endl;
return 0;
}
This is definitely faster in parallel than without, but with all 4 threads, the results are hugely variable. When the number of threads is set to 1, the output is correct. I would be most grateful if someone could assist me with this...
I am using the clang compiler with compile flags;
clang++-3.8 energy_integration.cpp -fopenmp=libiomp5
If this is a bust, then I'll have to learn to implement Boost::thread
, or std::thread
...
Your code does not define a custom reduction for OpenMP to reduce the Eigen objects. I'm not sure if clang supports user defined reductions (see OpenMP 4 spec, page 180). If so, you can declare a reduction and add reduction(+:result)
to the #pragma omp for
line. If not, you can do it yourself by changing your code as follows:
VectorXd result(500000); // This is the final result, not used by the threads
result.fill(0.);
double E = start;
result = integrand(E);
#pragma omp parallel
{
// This is a private copy per thread. This resolves race conditions between threads
VectorXd resultPrivate(500000);
resultPrivate.fill(0.);
#pragma omp for nowait// reduction(+:result) // Assuming user-defined reductions aren't allowed
for (int j = 1; j <= n; j++) {
E = start + (2 * j - 1.)*h;
resultPrivate = resultPrivate + 4.*integrand(E);
if (j != n) {
E = start + 2 * j*h;
resultPrivate = resultPrivate + 2.*integrand(E);
}
}
#pragma omp critical
{
// Here we sum the results of each thread one at a time
result += resultPrivate;
}
}
The error you're getting (in your comment) seems to be due to a size mismatch. While there isn't a trivial one in your code itself, don't forget that when OpenMP starts each thread, it has to initialize a private VectorXd
per thread. If none is supplied, the default would be VectorXd()
(with a size of zero). When this object is the used, the size mismatch occurs. A "correct" usage of omp declare reduction
would include the initializer part:
#pragma omp declare reduction (+: VectorXd: omp_out=omp_out+omp_in)\
initializer(omp_priv=VectorXd::Zero(omp_orig.size()))
omp_priv
is the name of the private variable. It gets initialized by VectorXd::Zero(...)
. The size is specified using omp_orig
. The standard
(page 182, lines 25-27) defines this as:
The special identifier omp_orig can also appear in the initializer-clause and it will refer to the storage of the original variable to be reduced.
In our case (see full example below), this is result
. So result.size()
is 500000 and the private variable is initialized to the correct size.
#include <iostream>
#include <string>
#include <Eigen/Core>
#include <omp.h>
using namespace Eigen;
using namespace std;
VectorXd integrand(double E)
{
VectorXd answer(500000);
double f = 5.*E + 32.*E*E*E*E;
for (int j = 0; j != 50; j++) answer[j] = j*f;
return answer;
}
#pragma omp declare reduction (+: Eigen::VectorXd: omp_out=omp_out+omp_in)\
initializer(omp_priv=VectorXd::Zero(omp_orig.size()))
int main()
{
omp_set_num_threads(4);
double start = 0.;
double end = 1.;
int n = 100;
double h = (end - start) / (2.*n);
VectorXd result(500000);
result.fill(0.);
double E = start;
result = integrand(E);
#pragma omp parallel for reduction(+:result)
for (int j = 1; j <= n; j++) {
E = start + (2 * j - 1.)*h;
result += (4.*integrand(E)).eval();
if (j != n) {
E = start + 2 * j*h;
result += (2.*integrand(E)).eval();
}
}
for (int i = 0; i < 50; ++i)
cout << i + 1 << " , " << result[i] << endl;
return 0;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With