I have implemented optical flow to track vehicles on road and it turned out to be very slow.
my code uses the functions:
How do I make this tracking fast and efficient?
My code is:
#include "highgui.h"
#include "cv.h"
#include "cxcore.h"
#include <iostream>
using namespace std;
const int MAX_CORNERS = 500;
int main()
{
CvCapture* capture=cvCreateFileCapture("E:\cam1.avi");
IplImage* img_A;// = cvLoadImage("image0.png", CV_LOAD_IMAGE_GRAYSCALE);
IplImage* img_B;// = cvLoadImage("image1.png", CV_LOAD_IMAGE_GRAYSCALE);
img_A=cvQueryFrame(capture);
IplImage* imgA = cvCreateImage( cvGetSize(img_A), 8, 1 );
IplImage* imgB = cvCreateImage( cvGetSize(img_A), 8, 1 );
cvNamedWindow( "ImageA", CV_WINDOW_AUTOSIZE );
cvNamedWindow( "ImageB", CV_WINDOW_AUTOSIZE );
cvNamedWindow( "LKpyr_OpticalFlow", CV_WINDOW_AUTOSIZE );
while(1)
{
int couter=0;
for(int k=0;k<20;k++)
{
img_B=cvQueryFrame(capture);
}
//cvCvtColor(imgA,imgA,CV_BGR2GRAY);
//cvCvtColor(imgB,imgB,CV_BGR2GRAY);
// Load two images and allocate other structures
/*IplImage* imgA = cvLoadImage("image0.png", CV_LOAD_IMAGE_GRAYSCALE);
IplImage* imgB = cvLoadImage("image1.png", CV_LOAD_IMAGE_GRAYSCALE);*/
CvSize img_sz = cvGetSize( img_A );
int win_size = 10;
IplImage* imgC = cvCreateImage( cvGetSize(img_A), 8, 1 );
cvZero(imgC);
// Get the features for tracking
IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
int corner_count = MAX_CORNERS;
CvPoint2D32f* cornersA = new CvPoint2D32f[ MAX_CORNERS ];
cvCvtColor(img_A,imgA,CV_BGR2GRAY);
cvCvtColor(img_B,imgB,CV_BGR2GRAY);
cvGoodFeaturesToTrack( imgA, eig_image, tmp_image, cornersA, &corner_count ,0.05, 5.0, 0, 3, 0, 0.04 );
cvFindCornerSubPix( imgA, cornersA, corner_count, cvSize( win_size, win_size ) ,cvSize( -1, -1 ), cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03 ) );
// Call Lucas Kanade algorithm
char features_found[ MAX_CORNERS ];
float feature_errors[ MAX_CORNERS ];
CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );
IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ];
/*int jk=0;
for(int i=0;i<imgA->width;i+=10)
{
for(int j=0;j<imgA->height;j+=10)
{
cornersA[jk].x=i;
cornersA[jk].y=j;
++jk;
}
}
*/
cvCalcOpticalFlowPyrLK( imgA, imgB, pyrA, pyrB, cornersA, cornersB, corner_count,
cvSize( win_size, win_size ), 5, features_found, feature_errors,
cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.3 ), 0 );
// Make an image of the results
for( int i=0; i < corner_count; i++ )
{
if( features_found[i]==0|| feature_errors[i]>550 )
{
//printf("Error is %f/n",feature_errors[i]);
continue;
}
//printf("Got it/n");
CvPoint p0 = cvPoint( cvRound( cornersA[i].x ), cvRound( cornersA[i].y ) );
CvPoint p1 = cvPoint( cvRound( cornersB[i].x ), cvRound( cornersB[i].y ) );
cvLine( imgC, p0, p1, CV_RGB(255,0,0), 2 );
cout<<p0.x<<" "<<p0.y<<endl;
}
cvShowImage( "LKpyr_OpticalFlow", imgC );
cvShowImage( "ImageA", imgA );
cvShowImage( "ImageB", imgB );
//cvCopyImage(imgB,imgA);
delete[] cornersA;
delete[] cornersB;
cvWaitKey(33);
}
return 0;
}
I might be going a bit over the line here but I would suggest you to check out OpenTLD
. OpenTLD (aka Predator) is one of the most efficient tracking algorithm. Zdenek Kalal has implemented OpenTLD in MATLAB. George Nebehay has made a very efficient C++ OpenCV port of OpenTLD
.
It's very easy to install and tracking is really efficient.
OpenTLD uses Median Flow Tracker to track and implements PN learning algorithm. In this YouTube Video, Zdenek Kalal shows the use of OpenTLD.
If you just want to implement a Median Flow Tracker, follow this link https://github.com/gnebehay/OpenTLD/tree/master/src/mftracker
If you want to use it in Python, I have made a Median Flow Tracker and also made a Python port of OpenTLD. But python port isn't much efficient.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With