I'm trying to use OpenCV's cv::threshold
function (more specific THRESH_OTSU
), only that I'd like to do it with a mask (any shape), so that the outside (background) is ignored during calculation.
Image is single channel (as it must be), red color bellow is only to mark an example polygon on an image.
I tried using adaptiveThreshold
, but there are a couple of problems that make it inappropriate in my case.
We use the cv2. THRESH_BINARY_INV method, which indicates that pixel values p less than T are set to the output value (the third argument). The cv2. threshold function then returns a tuple of 2 values: the first, T, is the threshold value.
threshold is used to apply the thresholding. The first argument is the source image, which should be a grayscale image. The second argument is the threshold value which is used to classify the pixel values. The third argument is the maximum value which is assigned to pixel values exceeding the threshold.
# import opencv import cv2 # Read image src = cv2. imread("threshold. png", cv2. IMREAD_GRAYSCALE) # Set threshold and maxValue thresh = 0 maxValue = 255 # Basic threshold example th, dst = cv2.
Wand threshold() function – Python The threshold() function is an inbuilt function in the Python Wand ImageMagick library which is used to modify the image such that any pixel's intensity value greater than the threshold is assigned the maximum intensity (white), or otherwise is assigned the minimum intensity (black).
In general, you can simply compute the threshold using cv::threshold
, and then copy the src
image on dst
using the inverted mask
.
// Apply cv::threshold on all image
thresh = cv::threshold(src, dst, thresh, maxval, type);
// Copy original image on inverted mask
src.copyTo(dst, ~mask);
With THRESH_OTSU
, however, you also need to compute the threshold value only on the masked image. The following code is a modified version of static double getThreshVal_Otsu_8u(const Mat& _src)
in thresh.cpp
:
double otsu_8u_with_mask(const Mat1b src, const Mat1b& mask)
{
const int N = 256;
int M = 0;
int i, j, h[N] = { 0 };
for (i = 0; i < src.rows; i++)
{
const uchar* psrc = src.ptr(i);
const uchar* pmask = mask.ptr(i);
for (j = 0; j < src.cols; j++)
{
if (pmask[j])
{
h[psrc[j]]++;
++M;
}
}
}
double mu = 0, scale = 1. / (M);
for (i = 0; i < N; i++)
mu += i*(double)h[i];
mu *= scale;
double mu1 = 0, q1 = 0;
double max_sigma = 0, max_val = 0;
for (i = 0; i < N; i++)
{
double p_i, q2, mu2, sigma;
p_i = h[i] * scale;
mu1 *= q1;
q1 += p_i;
q2 = 1. - q1;
if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON)
continue;
mu1 = (mu1 + i*p_i) / q1;
mu2 = (mu - q1*mu1) / q2;
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
if (sigma > max_sigma)
{
max_sigma = sigma;
max_val = i;
}
}
return max_val;
}
You then can wrap all in a function, here called threshold_with_mask
, that wraps all different cases for you. If there is no mask, or the mask is all-white, then use cv::threshold
. Otherwise, use one of the above mentioned approaches. Note that this wrapper works only for CV_8UC1
images (for simplicity sake, you can easily expand it to work with other types, if needed), and accepts all THRESH_XXX
combinations as original cv::threshold
.
double threshold_with_mask(Mat1b& src, Mat1b& dst, double thresh, double maxval, int type, const Mat1b& mask = Mat1b())
{
if (mask.empty() || (mask.rows == src.rows && mask.cols == src.cols && countNonZero(mask) == src.rows * src.cols))
{
// If empty mask, or all-white mask, use cv::threshold
thresh = cv::threshold(src, dst, thresh, maxval, type);
}
else
{
// Use mask
bool use_otsu = (type & THRESH_OTSU) != 0;
if (use_otsu)
{
// If OTSU, get thresh value on mask only
thresh = otsu_8u_with_mask(src, mask);
// Remove THRESH_OTSU from type
type &= THRESH_MASK;
}
// Apply cv::threshold on all image
thresh = cv::threshold(src, dst, thresh, maxval, type);
// Copy original image on inverted mask
src.copyTo(dst, ~mask);
}
return thresh;
}
Here is the full code for reference:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
// Modified from thresh.cpp
// static double getThreshVal_Otsu_8u(const Mat& _src)
double otsu_8u_with_mask(const Mat1b src, const Mat1b& mask)
{
const int N = 256;
int M = 0;
int i, j, h[N] = { 0 };
for (i = 0; i < src.rows; i++)
{
const uchar* psrc = src.ptr(i);
const uchar* pmask = mask.ptr(i);
for (j = 0; j < src.cols; j++)
{
if (pmask[j])
{
h[psrc[j]]++;
++M;
}
}
}
double mu = 0, scale = 1. / (M);
for (i = 0; i < N; i++)
mu += i*(double)h[i];
mu *= scale;
double mu1 = 0, q1 = 0;
double max_sigma = 0, max_val = 0;
for (i = 0; i < N; i++)
{
double p_i, q2, mu2, sigma;
p_i = h[i] * scale;
mu1 *= q1;
q1 += p_i;
q2 = 1. - q1;
if (std::min(q1, q2) < FLT_EPSILON || std::max(q1, q2) > 1. - FLT_EPSILON)
continue;
mu1 = (mu1 + i*p_i) / q1;
mu2 = (mu - q1*mu1) / q2;
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
if (sigma > max_sigma)
{
max_sigma = sigma;
max_val = i;
}
}
return max_val;
}
double threshold_with_mask(Mat1b& src, Mat1b& dst, double thresh, double maxval, int type, const Mat1b& mask = Mat1b())
{
if (mask.empty() || (mask.rows == src.rows && mask.cols == src.cols && countNonZero(mask) == src.rows * src.cols))
{
// If empty mask, or all-white mask, use cv::threshold
thresh = cv::threshold(src, dst, thresh, maxval, type);
}
else
{
// Use mask
bool use_otsu = (type & THRESH_OTSU) != 0;
if (use_otsu)
{
// If OTSU, get thresh value on mask only
thresh = otsu_8u_with_mask(src, mask);
// Remove THRESH_OTSU from type
type &= THRESH_MASK;
}
// Apply cv::threshold on all image
thresh = cv::threshold(src, dst, thresh, maxval, type);
// Copy original image on inverted mask
src.copyTo(dst, ~mask);
}
return thresh;
}
int main()
{
// Load an image
Mat1b img = imread("D:\\SO\\img\\nice.jpg", IMREAD_GRAYSCALE);
// Apply OpenCV version
Mat1b cvth;
double cvth_value = threshold(img, cvth, 100, 255, THRESH_OTSU);
// Create a binary mask
Mat1b mask(img.rows, img.cols, uchar(0));
rectangle(mask, Rect(100, 100, 200, 200), Scalar(255), CV_FILLED);
// Apply threshold with a mask
Mat1b th;
double th_value = threshold_with_mask(img, th, 100, 255, THRESH_OTSU, mask);
// Show results
imshow("cv::threshod", cvth);
imshow("threshold_with_balue", th);
waitKey();
return 0;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With