I'm trying to match 2 opposite images using OpenCV's DescriptorMatcher with no luck. The images are: http://i61.tinypic.com/28whu0g.jpg (left to right) and http://i61.tinypic.com/x35vte.jpg (right to left).
My code is pretty like alot of examples that I saw in StackOverflow and the web but still I always get no match.
String firstImageSourcePath = "RTL_IMAGE_PATH";
String secondImageSourcePath = "LTR_IMAGE_PATH";
Mat firstImageSrcImgMat = Highgui.imread(firstImageSourcePath);
Mat secondImageSrcImgMat = Highgui.imread(firstImageSourcePath);
if (firstImageSrcImgMat.empty() || secondImageSrcImgMat.empty()) {
System.out.println("Failed to load images");
return;
}
System.out.println("Loaded image at " + firstImageSourcePath + " and " + secondImageSourcePath);
FeatureDetector featureDetector = FeatureDetector.create(FeatureDetector.BRISK);
MatOfKeyPoint firstImgMatOfKeyPoints = new MatOfKeyPoint();
MatOfKeyPoint secondImgMatOfKeyPoints = new MatOfKeyPoint();
featureDetector.detect(firstImageSrcImgMat, firstImgMatOfKeyPoints);
featureDetector.detect(secondImageSrcImgMat, secondImgMatOfKeyPoints);
System.out.println("Detected " + firstImgMatOfKeyPoints.size() + " and " + secondImgMatOfKeyPoints + " blobs in the images");
List<KeyPoint> firstImgKeyPoints = firstImgMatOfKeyPoints.toList();
List<KeyPoint> secondImgKeyPoints = secondImgMatOfKeyPoints.toList();
System.out.println("First Image key points: " + firstImgKeyPoints);
System.out.println("Second Image key points: " + secondImgKeyPoints);
Mat firstImgDescriptors = new Mat();
Mat secondImgDescriptors = new Mat();
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.BRISK);
extractor.compute(firstImageSrcImgMat, firstImgMatOfKeyPoints, firstImgDescriptors);
extractor.compute(secondImageSrcImgMat, secondImgMatOfKeyPoints, secondImgDescriptors);
System.out.println("descriptorsA.size() : " + firstImgDescriptors.size());
System.out.println("descriptorsB.size() : " + secondImgDescriptors.size());
MatOfDMatch matches = new MatOfDMatch();
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT); // BRUTEFORCE_HAMMINGLUT
matcher.match(firstImgDescriptors, secondImgDescriptors, matches);
System.out.println("matches.size() : " + matches.size());
System.out.println("matches : " + matches);
MatOfDMatch matchesFiltered = new MatOfDMatch();
List<DMatch> matchesList = matches.toList();
List<DMatch> bestMatches = new ArrayList<DMatch>();
Double max_dist = 0.0;
Double min_dist = 100.0;
for (int i = 0; i < matchesList.size(); i++) {
Double dist = (double) matchesList.get(i).distance;
if (dist > 0)
System.out.println("dist : " + dist);
if (dist < min_dist && dist != 0) {
min_dist = dist;
}
if (dist > max_dist) {
max_dist = dist;
}
}
System.out.println("max_dist : " + max_dist);
System.out.println("min_dist : " + min_dist);
if (min_dist > 50) {
System.out.println("No match found, min_dist under minimum value");
return;
}
double threshold = 3 * min_dist;
double threshold2 = 2 * min_dist;
if (threshold > 75) {
threshold = 75;
} else if (threshold2 >= max_dist) {
threshold = min_dist * 1.1;
} else if (threshold >= max_dist) {
threshold = threshold2 * 1.4;
}
System.out.println("Threshold : " + threshold);
for (int i = 0; i < matchesList.size(); i++) {
Double dist = (double) matchesList.get(i).distance;
if (dist < threshold) {
bestMatches.add(matches.toList().get(i));
System.out.println(String.format(i + " best match added : %s", dist));
}
}
matchesFiltered.fromList(bestMatches);
System.out.println("matchesFiltered.size() : " + matchesFiltered.size());
if (matchesFiltered.rows() >= 1) {
System.out.println("match found");
} else {
System.out.println("match not found");
}
any hint what am I doing wrong?
As @Iwillnotexist-Idonotexist stated the first problem is the threshold you are applying. Try to use a threshold that does not depend on the distance between descriptors that does not perform well since some of the descriptors are much more discriminative than others. I think that will give you better results. I advise you to use the Ratio Test proposed by D. Lowe in SIFT’s paper. Please give a look at section 7.1: http://cs.ubc.ca/~lowe/papers/ijcv04.pdf
The second problem is that you are using BRISK to detect features in your images. This OpenCV implementation has bugs (you can check here: http://code.opencv.org/issues/3976) so try using another FeatureDetector like FAST, ORB, etc … (descriptor is fine so you can keep using it)
I ended up testing in your pictures and I managed to get some results with different detectors / descriptors: (keypoints with no match -> yellow)
BRISK detector and descriptor:
ORB detector with BRISK as descriptor:
ORB detector and descriptor
All results were obtained using the ratio test to remove false matches. I hope this helps!
EDIT:
BruteForceMatcher<Hamming> matcher;
vector< vector<DMatch> > matches;
vector <DMatch> goodMatches;
matcher.knnMatch(imgDescriptors1, imgDescriptors2, matches, 2);
// Ratio Test
for (unsigned int matchIdx = 0; matchIdx < matches.size(); ++matchIdx)
{
const float ratio = 0.8; // As in Lowe's paper (can be tuned)
if (matches[matchIdx][0].distance < ratio * matches[matchIdx][1].distance)
{
goodMatches.push_back(matches[matchIdx][0]);
}
}
Java version is:
DescriptorMatcher descriptorMatcher;
descriptorMatcher=DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING );
MatOfDMatch good_matches;
good_matches = new MatOfDMatch();
LinkedList<MatOfDMatch> dmatchesListOfMat = new LinkedList<>();
descriptorMatcher.knnMatch(imgDescriptors1, imgDescriptors2, dmatchesListOfMat, 2);
LinkedList<DMatch> good_matchesList = new LinkedList<>();
for (int matchIndx = 0; matchIndx < dmatchesListOfMat.size() ; matchIndx++) {
double ratio = 0.8;
if (dmatchesListOfMat.get(matchIndx).toArray()[0].distance < ratio * dmatchesListOfMat.get(matchIndx).toArray()[1].distance) {
good_matchesList.addLast(dmatchesListOfMat.get(matchIndx).toArray()[0]);
}
}
good_matches.fromList(good_matchesList);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With