Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

On string interning and alternatives

I have a large file which, in essence contains data like:

Netherlands,Noord-holland,Amsterdam,FooStreet,1,...,...
Netherlands,Noord-holland,Amsterdam,FooStreet,2,...,...
Netherlands,Noord-holland,Amsterdam,FooStreet,3,...,...
Netherlands,Noord-holland,Amsterdam,FooStreet,4,...,...
Netherlands,Noord-holland,Amsterdam,FooStreet,5,...,...
Netherlands,Noord-holland,Amsterdam,BarRoad,1,...,...
Netherlands,Noord-holland,Amsterdam,BarRoad,2,...,...
Netherlands,Noord-holland,Amsterdam,BarRoad,3,...,...
Netherlands,Noord-holland,Amsterdam,BarRoad,4,...,...
Netherlands,Noord-holland,Amstelveen,BazDrive,1,...,...
Netherlands,Noord-holland,Amstelveen,BazDrive,2,...,...
Netherlands,Noord-holland,Amstelveen,BazDrive,3,...,...
Netherlands,Zuid-holland,Rotterdam,LoremAve,1,...,...
Netherlands,Zuid-holland,Rotterdam,LoremAve,2,...,...
Netherlands,Zuid-holland,Rotterdam,LoremAve,3,...,...
...

This is a multi-gigabyte file. I have a class that reads this file and exposes these lines (records) as an IEnumerable<MyObject>. This MyObject has several properties (Country,Province,City, ...) etc.

As you can see there is a LOT of duplication of data. I want to keep exposing the underlying data as an IEnumerable<MyObject>. However, some other class might (and probably will) make some hierarchical view/structure of this data like:

Netherlands
    Noord-holland
        Amsterdam
            FooStreet [1, 2, 3, 4, 5]
            BarRoad [1, 2, 3, 4]
            ...
        Amstelveen
            BazDrive [1, 2, 3]
            ...
         ...
    Zuid-holland
        Rotterdam
            LoremAve [1, 2, 3]
            ...
        ...
    ...
...

When reading this file, I do, essentially, this:

foreach (line in myfile) {
    fields = line.split(",");
    yield return new MyObject {
        Country = fields[0],
        Province = fields[1],
        City = fields[2],
        Street = fields[3],
        //...other fields
    };
}

Now, to the actual question at hand: I could use string.Intern() to intern the Country, Province, City, and Street strings (those are the main 'vilains', the MyObject has several other properties not relevant to the question).

foreach (line in myfile) {
    fields = line.split(",");
    yield return new MyObject {
        Country = string.Intern(fields[0]),
        Province = string.Intern(fields[1]),
        City = string.Intern(fields[2]),
        Street = string.Intern(fields[3]),
        //...other fields
    };
}

This will save about 42% of memory (tested and measured) when holding the entire dataset in memory since all duplicate strings will be a reference to the same string. Also, when creating the hierarchical structure with a lot of LINQ's .ToDictionary() method the keys (Country, Province etc.) of the resp. dictionaries will be much more efficient.

However, one of the drawbacks (aside a slight loss of performance, which is not problem) of using string.Intern() is that the strings won't be garbage collected anymore. But when I'm done with my data I do want all that stuff garbage collected (eventually).

I could use a Dictionary<string, string> to 'intern' this data but I don't like the "overhead" of having a key and value where I am, actually, only interested in the key. I could set the value to null or the use the same string as value (which will result in the same reference in key and value). It's only a small price of a few bytes to pay, but it's still a price.

Something like a HashSet<string> makes more sense to me. However, I cannot get a reference to a string in the HashSet; I can see if the HashSet contains a specific string, but not get a reference to that specific instance of the located string in the HashSet. I could implement my own HashSet for this, but I am wondering what other solutions you kind StackOverflowers may come up with.

Requirements:

  • My "FileReader" class needs to keep exposing an IEnumerable<MyObject>
  • My "FileReader" class may do stuff (like string.Intern()) to optimize memory usage
  • The MyObject class cannot change; I won't make a City class, Country class etc. and have MyObject expose those as properties instead of simple string properties
  • Goal is to be (more) memory efficient by de-duplicating most of the duplicate strings in Country, Province, City etc.; how this is achieved (e.g. string interning, internal hashset / collection / structure of something) is not important. However:
  • I know I can stuff the data in a database or use other solutions in such direction; I am not interested in these kind of solutions.
  • Speed is only of secondary concern; the quicker the better ofcourse but a (slight) loss in performance while reading/iterating the objects is no problem
  • Since this is a long-running process (as in: windows service running 24/7/365) that, occasionally, processes a bulk of this data I want the data to be garbage-collected when I'm done with it; string interning works great but will, in the long run, result in a huge string pool with lots of unused data
  • I would like any solutions to be "simple"; adding 15 classes with P/Invokes and inline assembly (exaggerated) is not worth the effort. Code maintainability is high on my list.

This is more of a 'theoretical' question; it's purely out of curiosity / interest that I'm asking. There is no "real" problem, but I can see that in similar situations this might be a problem to someone.


For example: I could do something like this:

public class StringInterningObject
{
    private HashSet<string> _items;

    public StringInterningObject()
    {
        _items = new HashSet<string>();
    }

    public string Add(string value)
    {
        if (_items.Add(value))
            return value;  //New item added; return value since it wasn't in the HashSet
        //MEH... this will quickly go O(n)
        return _items.First(i => i.Equals(value)); //Find (and return) actual item from the HashSet and return it
    }
}

But with a large set of (to be de-duplicated) strings this will quickly bog down. I could have a peek at the reference source for HashSet or Dictionary or... and build a similar class that doesn't return bool for the Add() method but the actual string found in the internals/bucket.

The best I could come up with until now is something like:

public class StringInterningObject
{
    private ConcurrentDictionary<string, string> _items;

    public StringInterningObject()
    {
        _items = new ConcurrentDictionary<string, string>();
    }

    public string Add(string value)
    {
        return _items.AddOrUpdate(value, value, (v, i) => i);
    }
}

Which has the "penalty" of having a Key and a Value where I'm actually only interested in the Key. Just a few bytes though, small price to pay. Coincidally this also yields 42% less memory usage; the same result as when using string.Intern() yields.

tolanj came up with System.Xml.NameTable:

public class StringInterningObject
{
    private System.Xml.NameTable nt = new System.Xml.NameTable();

    public string Add(string value)
    {
        return nt.Add(value);
    }
}

(I removed the lock and string.Empty check (the latter since the NameTable already does that))

xanatos came up with a CachingEqualityComparer:

public class StringInterningObject
{
    private class CachingEqualityComparer<T> : IEqualityComparer<T> where T : class
    {
        public System.WeakReference X { get; private set; }
        public System.WeakReference Y { get; private set; }

        private readonly IEqualityComparer<T> Comparer;

        public CachingEqualityComparer()
        {
            Comparer = EqualityComparer<T>.Default;
        }

        public CachingEqualityComparer(IEqualityComparer<T> comparer)
        {
            Comparer = comparer;
        }

        public bool Equals(T x, T y)
        {
            bool result = Comparer.Equals(x, y);

            if (result)
            {
                X = new System.WeakReference(x);
                Y = new System.WeakReference(y);
            }

            return result;
        }

        public int GetHashCode(T obj)
        {
            return Comparer.GetHashCode(obj);
        }

        public T Other(T one)
        {
            if (object.ReferenceEquals(one, null))
            {
                return null;
            }

            object x = X.Target;
            object y = Y.Target;

            if (x != null && y != null)
            {
                if (object.ReferenceEquals(one, x))
                {
                    return (T)y;
                }
                else if (object.ReferenceEquals(one, y))
                {
                    return (T)x;
                }
            }

            return one;
        }
    }

    private CachingEqualityComparer<string> _cmp; 
    private HashSet<string> _hs;

    public StringInterningObject()
    {
        _cmp = new CachingEqualityComparer<string>();
        _hs = new HashSet<string>(_cmp);
    }

    public string Add(string item)
    {
        if (!_hs.Add(item))
            item = _cmp.Other(item);
        return item;
    }
}

(Modified slightly to "fit" my "Add() interface")

As per Henk Holterman's request:

public class StringInterningObject
{
    private Dictionary<string, string> _items;

    public StringInterningObject()
    {
        _items = new Dictionary<string, string>();
    }

    public string Add(string value)
    {
        string result;
        if (!_items.TryGetValue(value, out result))
        {
            _items.Add(value, value);
            return value;
        }
        return result;
    }
}

I'm just wondering if there's maybe a neater/better/cooler way to 'solve' my (not so much of an actual) problem. By now I have enough options I guess wink


Here are some numbers I came up with for some simple, short, preliminary tests:


Non optimized
Memory: ~4,5Gb
Load time: ~52s


StringInterningObject (see above, the ConcurrentDictionary variant)
Memory: ~2,6Gb
Load time: ~49s


string.Intern()
Memory: ~2,3Gb
Load time: ~45s


System.Xml.NameTable
Memory: ~2,3Gb
Load time: ~41s


CachingEqualityComparer
Memory: ~2,3Gb
Load time: ~58s


StringInterningObject (see above, the (non-concurrent) Dictionary variant) as per Henk Holterman's request:
Memory: ~2,3Gb
Load time: ~39s

Although the numbers aren't very definitive, it seems that the many memory-allocations for the non-optimized version actually slow down more than using either string.Intern() or the above StringInterningObjects which results in (slightly) longer load times. Also, string.Intern() seems to 'win' from StringInterningObject but not by a large margin; << See updates.

like image 796
RobIII Avatar asked May 01 '15 09:05

RobIII


People also ask

What is intern method of string?

String Interning is a method of storing only one copy of each distinct String Value, which must be immutable. By applying String. intern() on a couple of strings will ensure that all strings having the same contents share the same memory.

What is intern () in string class?

The method intern() creates an exact copy of a String object in the heap memory and stores it in the String constant pool. Note that, if another String with the same contents exists in the String constant pool, then a new object won't be created and the new reference will point to the other String.

What is the use of intern method?

The intern() method creates an exact copy of a string that is present in the heap memory and stores it in the String constant pool if not already present. If the string is already present, it returns the reference. The intern() method helps to save memory space and reuse it efficiently at the cost of time.


2 Answers

I've had exactly this requirement and indeed asked on SO, but with nothing like the detail of your question, no useful responses. One option that is built in is a (System.Xml).NameTable, which is basically a string atomization object, which is what you are looking for, we had (we've actually move to Intern because we do keep these strings for App-life).

if (name == null) return null;
if (name == "") return string.Empty; 
lock (m_nameTable)
{
      return m_nameTable.Add(name);
}

on a private NameTable

http://referencesource.microsoft.com/#System.Xml/System/Xml/NameTable.cs,c71b9d3a7bc2d2af shows its implemented as a Simple hashtable, ie only storing one reference per string.

Downside? is its completely string specific. If you do cross-test for memory / speed I'd be interested to see the results. We were already using System.Xml heavily, might of course not seem so natural if you where not.

like image 200
tolanj Avatar answered Oct 15 '22 17:10

tolanj


When in doubt, cheat! :-)

public class CachingEqualityComparer<T> : IEqualityComparer<T> where  T : class
{
    public T X { get; private set; }
    public T Y { get; private set; }

    public IEqualityComparer<T> DefaultComparer = EqualityComparer<T>.Default;

    public bool Equals(T x, T y)
    {
        bool result = DefaultComparer.Equals(x, y);

        if (result)
        {
            X = x;
            Y = y;
        }

        return result;
    }

    public int GetHashCode(T obj)
    {
        return DefaultComparer.GetHashCode(obj);
    }

    public T Other(T one)
    {
        if (object.ReferenceEquals(one, X))
        {
            return Y;
        }

        if (object.ReferenceEquals(one, Y))
        {
            return X;
        }

        throw new ArgumentException("one");
    }

    public void Reset()
    {
        X = default(T);
        Y = default(T);
    }
}

Example of use:

var comparer = new CachingEqualityComparer<string>();
var hs = new HashSet<string>(comparer);

string str = "Hello";

string st1 = str.Substring(2);
hs.Add(st1);

string st2 = str.Substring(2);

// st1 and st2 are distinct strings!
if (object.ReferenceEquals(st1, st2))
{
    throw new Exception();
}

comparer.Reset();

if (hs.Contains(st2))
{
    string cached = comparer.Other(st2);
    Console.WriteLine("Found!");

    // cached is st1
    if (!object.ReferenceEquals(cached, st1))
    {
        throw new Exception();
    }
}

I've created an equality comparer that "caches" the last Equal terms it analyzed :-)

Everything could then be encapsulated in a subclass of HashSet<T>

/// <summary>
/// An HashSet&lt;T;gt; that, thorough a clever use of an internal
/// comparer, can have a AddOrGet and a TryGet
/// </summary>
/// <typeparam name="T"></typeparam>
public class HashSetEx<T> : HashSet<T> where T : class
{

    public HashSetEx()
        : base(new CachingEqualityComparer<T>())
    {
    }

    public HashSetEx(IEqualityComparer<T> comparer)
        : base(new CachingEqualityComparer<T>(comparer))
    {
    }

    public T AddOrGet(T item)
    {
        if (!Add(item))
        {
            var comparer = (CachingEqualityComparer<T>)Comparer;

            item = comparer.Other(item);
        }

        return item;
    }

    public bool TryGet(T item, out T item2)
    {
        if (Contains(item))
        {
            var comparer = (CachingEqualityComparer<T>)Comparer;

            item2 = comparer.Other(item);
            return true;
        }

        item2 = default(T);
        return false;
    }

    private class CachingEqualityComparer<T> : IEqualityComparer<T> where T : class
    {
        public WeakReference X { get; private set; }
        public WeakReference Y { get; private set; }

        private readonly IEqualityComparer<T> Comparer;

        public CachingEqualityComparer()
        {
            Comparer = EqualityComparer<T>.Default;
        }

        public CachingEqualityComparer(IEqualityComparer<T> comparer)
        {
            Comparer = comparer;
        }

        public bool Equals(T x, T y)
        {
            bool result = Comparer.Equals(x, y);

            if (result)
            {
                X = new WeakReference(x);
                Y = new WeakReference(y);
            }

            return result;
        }

        public int GetHashCode(T obj)
        {
            return Comparer.GetHashCode(obj);
        }

        public T Other(T one)
        {
            if (object.ReferenceEquals(one, null))
            {
                return null;
            }

            object x = X.Target;
            object y = Y.Target;

            if (x != null && y != null)
            {
                if (object.ReferenceEquals(one, x))
                {
                    return (T)y;
                }
                else if (object.ReferenceEquals(one, y))
                {
                    return (T)x;
                }
            }

            return one;
        }
    }
}

Note the use of WeakReference so that there aren't useless references to objects that could prevent garbage collection.

Example of use:

var hs = new HashSetEx<string>();

string str = "Hello";

string st1 = str.Substring(2);
hs.Add(st1);

string st2 = str.Substring(2);

// st1 and st2 are distinct strings!
if (object.ReferenceEquals(st1, st2))
{
    throw new Exception();
}

string stFinal = hs.AddOrGet(st2);

if (!object.ReferenceEquals(stFinal, st1))
{
    throw new Exception();
}

string stFinal2;
bool result = hs.TryGet(st1, out stFinal2);

if (!object.ReferenceEquals(stFinal2, st1))
{
    throw new Exception();
}

if (!result)
{
    throw new Exception();
}
like image 44
xanatos Avatar answered Oct 15 '22 17:10

xanatos