I am currently working on a website where, roughly 40 million documents and images should be served to it's users. I need suggestions on which method is the most suitable for storing content with subject to these requirements.
I did some research and found out about the following solutions;
The website is developed using PHP and Couchbase Community Edition is used as the database.
I would really appreciate any input.
Thank you.
Object storage, also known as object-based storage, is a strategy that manages and manipulates data storage as distinct units, called objects. These objects are kept in a single storehouse and are not ingrained in files inside other folders.
Object storage systems allow retention of massive amounts of unstructured data in which data is written once and read once (or many times). Object storage is used for purposes such as storing objects like videos and photos on Facebook, songs on Spotify, or files in online collaboration services, such as Dropbox.
Object storage is cost efficient: you only pay for what you use. It can scale easily, making it a great choice for public cloud storage. It's a storage system well suited for static data, and its agility and flat nature means it can scale to extremely large quantities of data.
From his perspective, object storage was just for unstructured data, while databases were about storing “mutable metadata.” And compared to the enormous amounts of unstructured data in the cloud, these enterprise databases were comparatively small.
I have been working on a similar system for last two years, the work is still in progress. However, requirements are slightly different from yours: modifications are not possible (I will try to explain why later), file sizes fall in range from several bytes to several megabytes, and, the most important one, the deduplication, which should be implemented both on the document and block levels. If two different users upload the same file to the storage, the only copy of the file should be kept. Also if two different files partially intersect with each other, it's necessary to store the only copy of the common part of these files.
But let's focus on your requirements, so deduplication is not the case. First of all, high availability implies replication. You'll have to store your file in several replicas (typically 2 or 3, but there are techniques to decrease data parity) on independent machines in order to stay alive in case if one of the storage servers in your backend dies. Also, taking into account the estimation of the data amount, it's clear that all your data just won't fit into a single server, so vertical scaling is not possible and you have to consider partitioning. Finally, you need to take into account concurrency control to avoid race conditions when two different clients are trying to write or update the same data simultaneously. This topic is close to the concept of transactions (I don't mean ACID literally, but something close). So, to summarize, these facts mean that you're are actually looking for distributed database designed to store BLOBs.
On of the biggest problems in distributed systems is difficulties with global state of the system. In brief, there are two approaches:
master-slave
replication in RDBMS world), or remaining peers need to elect new one (algorithms like Paxos
and Raft
are designed to target this issue). Anyway, almost whole incoming system traffic goes through the leader. This leads to the "hot spots" in backend: the situation when CPU and IO costs are unevenly distributed across the system. By the way, Raft
-based systems have very low write throughput (check etcd
and consul
limitations if you are interested).So now let's discuss the options you've found:
Storing content as BLOBs in databases.
I don't think it's a good option to store files in traditional RDBMS because they provide optimizations for structured data and strong consistency, and you don't need neither of this. Also you'll have difficulties with backups and scaling. People usually don't use RDBMS in this way.
Using GridFS to chunk and store content.
I'm not sure, but it looks like GridFS is built on the top of MongoDB. Again, this is document-oriented database designed to store JSONs, not BLOBs. Also MongoDB had problems with a cluster for many years. MongoDB passed Jepsen tests only in 2017. This may mean that MongoDB cluster is not mature yet. Make performance and stress tests, if you go this way.
Storing content in a file server in directories using a hash and storing the metadata in a database.
This option means that you need to develop object storage on your own. Consider all the problems I've mentioned above.
Using a distributed file system such as GlusterFS or HDFS and storing the file metadata in a database.
I used neither of these solutions, but HDFS looks like overkill, because you get dependent on Hadoop stack. Have no idea about GlusterFS performance. Always consider the design of distributed file systems. If they have some kind of dedicated "metadata" serves, treat it as a single point of failure.
Finally, my thoughts on the solutions that may fit your needs:
GPL
license.Red Hat
people know how to deploy and maintain it. So get ready to a vendor lock. Also I heard that it have too complicated settings. Never used in production, so don't know about performance.You may also check wiki page with the full list of available solutions.
And the last point: I strongly recommend not to use OpenStack Swift (there are lot of reasons why, but first of all, Python is just not good for these purposes).
One probably-relevant question, whose answer I do not readily see in your post, is this:
and:
Personally (and, "categorically speaking"), I prefer to tackle such problems in two stages: (1) identifying the objects to be stored – e.g. using a database as an index; and (2) actually storing them, this being a task that I wish to delegate to "a true file-system, which after all specializes in such things."
A database (it "offhand" seems to me ...) would be a very good way to handle the logical ("as seen by the user") taxonomy of the things which you wish to store, while a distributed filesystem could handle the physical realities of storing the data and actually getting it to where it needs to go, and your application would be in the perfect position to gloss-over all of those messy filesystem details . . .
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With