I am using the following code to create an RDD for a file I imported from MySQL with Sqoop into Hive:
def rddFromParquetHdfsFile(path: String): RDD[GenericRecord] = {
val job = new Job()
FileInputFormat.setInputPaths(job, path)
ParquetInputFormat.setReadSupportClass(job,
classOf[AvroReadSupport[GenericRecord]])
return sc.newAPIHadoopRDD(job.getConfiguration,
classOf[ParquetInputFormat[GenericRecord]],
classOf[Void],
classOf[GenericRecord]).map(x => x._2)
}
val warehouse = "hdfs://quickstart/user/hive/warehouse/"
val order_items = rddFromParquetHdfsFile(warehouse + "order_items");
val products = rddFromParquetHdfsFile(warehouse + "products");
I now try to view the first 5 products:
products.take(5)
and I end up with the following error:
org.apache.spark.SparkException:
Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a
not serializable result: org.apache.avro.generic.GenericData$Record
Serialization stack:
- object not serializable (class:
org.apache.avro.generic.GenericData$Record, value: {"product_id": 1,
"product_category_id": 2, "product_name": "Quest Q64 10 FT. x 10 FT. Slant Leg Instant U", "product_description": "", "product_price": 59.98, "product_image": "http://images.acmesports.sports /Quest+Q64+10+FT.+x+10+FT.+Slant+Leg+Instant+Up+Canopy"})
- element of array (index: 0)
- array (class [Lorg.apache.avro.generic.GenericRecord;, size 4)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1294)
Any suggestions about how to get around this ?
Try this with Spark conf:
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.registerKryoClasses(Array(classOf[org.apache.avro.generic.GenericData.Record]))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With