Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Numpy/Python: Efficient matrix as multiplication of cartesian product of input matrix

Problem:

The input is a (i,j)-matrix M. The desired output is a (i^n,j^n) matrix K , where n is the number of products taken. The verbose way to get the desired output is as follows

  • Generate all arrays of n row permutations I (total of i**n n-arrays)
  • Generate all arrays of n column permutations J (total of j**n n-arrays)
  • K[i,j] = m[I[0],J[0]] * ... * m[I[n],J[n]] for all n in range(len(J))

The straightforward way I've done this is by generating a list of labels of all n-permutations of numbers in range(len(np.shape(m)[0])) and range(len(np.shape(m)[1])) for rows and columns, respectively. Afterwards you can multiply them as in the last bullet point above. This, however, is not practical for large input matrices -- so I'm looking for ways to optimize the above. Thank you in advance

Example:

Input

np.array([[1,2,3],[4,5,6]])

Output for n = 3

[[ 1. 2. 3. 2. 4. 6. 3. 6. 9. 2. 4. 6. 4. 8. 12. 6. 12. 18. 3. 6. 9. 6. 12. 18. 9. 18. 27.]

[ 4. 5. 6. 8. 10. 12. 12. 15. 18. 8. 10. 12. 16. 20. 24. 24. 30. 36. 12. 15. 18. 24. 30. 36. 36. 45. 54.]

[ 4. 8. 12. 5. 10. 15. 6. 12. 18. 8. 16. 24. 10. 20. 30. 12. 24. 36. 12. 24. 36. 15. 30. 45. 18. 36. 54.]

[ 16. 20. 24. 20. 25. 30. 24. 30. 36. 32. 40. 48. 40. 50. 60. 48. 60. 72. 48. 60. 72. 60. 75. 90. 72. 90. 108.]

[ 4. 8. 12. 8. 16. 24. 12. 24. 36. 5. 10. 15. 10. 20. 30. 15. 30. 45. 6. 12. 18. 12. 24. 36. 18. 36. 54.]

[ 16. 20. 24. 32. 40. 48. 48. 60. 72. 20. 25. 30. 40. 50. 60. 60. 75. 90. 24. 30. 36. 48. 60. 72. 72. 90. 108.]

[ 16. 32. 48. 20. 40. 60. 24. 48. 72. 20. 40. 60. 25. 50. 75. 30. 60. 90. 24. 48. 72. 30. 60. 90. 36. 72. 108.]

[ 64. 80. 96. 80. 100. 120. 96. 120. 144. 80. 100. 120. 100. 125. 150. 120. 150. 180. 96. 120. 144. 120. 150. 180. 144. 180. 216.]]

Partial solution:

The best I've found is a function to create the cartesian product of matrices proposed here: https://stackoverflow.com/a/1235363/4003747 The problem is that the output is not a matrix but an array of arrays. Multiplying the element of each array gives the values I'm after, but in an unordered fashion. I've tried for a while but I have no idea how to sensibly reorder them.

Inefficient solution for n =3:

import numpy as np
import itertools

m=np.array([[1,2,3],[4,5,6]])

def f(m):
    labels_i = [list(p) for p in itertools.product(range(np.shape(m)[0]),repeat=3)]
    labels_j = [list(p) for p in itertools.product(range(np.shape(m)[1]),repeat=3)]


    out = np.zeros([len(labels_i),len(labels_j)])
    for i in range(len(labels_i)):
        for j in range(len(labels_j)):
            out[i,j] = m[labels_i[i][0],labels_j[j][0]] * m[labels_i[i][1],labels_j[j][1]] * m[labels_i[i][2],labels_j[j][2]]
    return out
like image 631
Brox Avatar asked Jan 22 '16 09:01

Brox


People also ask

Does NumPy multiplication matrix?

NumPy matrix multiplication can be done by the following three methods. multiply(): element-wise matrix multiplication. matmul(): matrix product of two arrays. dot(): dot product of two arrays.

Is NumPy matrix multiplication fast?

Matrix multiplications in NumPy are reasonably fast without the need for optimization. However, if every second counts, it is possible to significantly improve performance (even without a GPU).

Which function of NumPy is used for element-wise matrix multiplication?

multiply() function is used when we want to compute the multiplication of two array. It returns the product of arr1 and arr2, element-wise.


1 Answers

Here's a vectorized approach using a combination of broadcasting and linear indexing -

from itertools import product

# Get input array's shape
r,c = A.shape

# Setup arrays corresponding to labels i and j
arr_i = np.array(list(product(range(r), repeat=n)))
arr_j = np.array(list(product(range(c), repeat=n)))

# Use linear indexing with ".ravel()" to extract elements.
# Perform elementwise product along the rows for the final output
out = A.ravel()[(arr_i*c)[:,None,:] + arr_j].prod(2)

Runtime test and output verification -

In [167]: # Inputs          
     ...: n = 4
     ...: A = np.array([[1,2,3],[4,5,6]])
     ...: 
     ...: def f(m):
     ...:   labels_i = [list(p) for p in product(range(np.shape(m)[0]),repeat=n)]
     ...:   labels_j = [list(p) for p in product(range(np.shape(m)[1]),repeat=n)]
     ...: 
     ...:   out = np.zeros([len(labels_i),len(labels_j)])
     ...:   for i in range(len(labels_i)):
     ...:      for j in range(len(labels_j)):
     ...:          out[i,j] = m[labels_i[i][0],labels_j[j][0]] \
     ...:                   * m[labels_i[i][1],labels_j[j][1]] \
     ...:                   * m[labels_i[i][2],labels_j[j][2]] \
     ...:                   * m[labels_i[i][3],labels_j[j][3]]
     ...:   return out
     ...: 
     ...: def f_vectorized(A,n):
     ...:   r,c = A.shape
     ...:   arr_i = np.array(list(product(range(r), repeat=n)))
     ...:   arr_j = np.array(list(product(range(c), repeat=n)))
     ...:   return A.ravel()[(arr_i*c)[:,None,:] + arr_j].prod(2)
     ...: 

In [168]: np.allclose(f_vectorized(A,n),f(A))
Out[168]: True

In [169]: %timeit f(A)
100 loops, best of 3: 2.37 ms per loop

In [170]: %timeit f_vectorized(A,n)
1000 loops, best of 3: 202 µs per loop
like image 64
Divakar Avatar answered Nov 22 '22 02:11

Divakar