I know this was asked many times, but, I am still having trouble with the following problem. I defined my own functions for mean and stdev, but stdev takes too long to calculate std(Wapproxlist). So, I need a solution for the issue.
import numpy as np
def Taylor_Integration(a, b, mu):
import sympy as sy
A, B, rho = sy.symbols('A B rho', real=True)
Wapp = (A + B*rho - rho/(2*mu*(1 - rho)))**2
eq1 = sy.diff(sy.integrate(Wapp, (rho, a, b)),A)
eq2 = sy.diff(sy.integrate(Wapp, (rho, a, b)),B)
sol = sy.solve([eq1,eq2], [A,B])
return sol[A], sol[B]
def Wapprox(rho, A, B):
return A + B*rho
def W(mu, rho):
return rho/(2*mu*(1-rho))
Wapproxlist = []
Wlist = []
alist = np.linspace(0, 0.98, 10)
for a in alist:
b = a+0.01; mu = 1
A, B = Taylor_Integration(a, b, mu)
rholist = np.linspace(a, b, 100)
for rho in rholist:
Wapproxlist.append(Wapprox(rho, A, B))
Wlist.append(W(mu, rho))
print('mean=%.3f stdv=%.3f' % (np.mean(Wapproxlist), np.std(Wapproxlist)))
print('mean=%.3f stdv=%.3f' % (np.mean(Wlist), np.std(Wlist)))
AttributeError Traceback (most recent call last)
<ipython-input-83-468c8e1a9f89> in <module>()
----> 1 print('mean=%.3f stdv=%.3f' % (np.mean(Wapproxlist), np.std(Wapproxlist)))
2 print('mean=%.3f stdv=%.3f' % (np.mean(Wlist), np.std(Wlist)))
C:\Users\2tc\.julia\v0.6\Conda\deps\usr\lib\site-packages\numpy\core\fromnumeric.pyc in std(a, axis, dtype, out, ddof, keepdims)
3073
3074 return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
-> 3075 **kwargs)
3076
3077
C:\Users\2tc\.julia\v0.6\Conda\deps\usr\lib\site-packages\numpy\core\_methods.pyc in _std(a, axis, dtype, out, ddof, keepdims)
140 ret = ret.dtype.type(um.sqrt(ret))
141 else:
--> 142 ret = um.sqrt(ret)
143
144 return ret
AttributeError: 'Float' object has no attribute 'sqrt'
numpy
doesn't know how to handle sympy
's Float
type.
(Pdb) type(Wapproxlist[0])
<class 'sympy.core.numbers.Float'>
Convert it to a numpy array before calling np.mean
and np.std
.
Wapproxlist = np.array(Wapproxlist, dtype=np.float64) # can use np.float32 as well
print('mean=%.3f stdv=%.3f' % (np.mean(Wapproxlist), np.std(Wapproxlist)))
print('mean=%.3f stdv=%.3f' % (np.mean(Wlist), np.std(Wlist)))
output:
mean=4.177 stdv=10.283
mean=4.180 stdv=10.300
Note: If you're looking to speed this up, you'll want to avoid sympy
. Symbolic solvers are pretty cool, but they're also very slow compared to floating point computations.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With