With the help of Numpy numpy. resize(), we can resize the size of an array. Array can be of any shape but to resize it we just need the size i.e (2, 2), (2, 3) and many more. During resizing numpy append zeros if values at a particular place is missing.
NumPy: reshape() functionThe reshape() function is used to give a new shape to an array without changing its data. Array to be reshaped. The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length.
Use the opencv module to resize images in Python To resize an image, we will first read the image using the imread() function and resize it using the resize() function as shown below. The imread() returns an array that stores the image. We resize it with the resize() function.
To downscale an image to half size in Python, use the cv2. resize() function which passes the fx and fy value to 0.5.
Yeah, you can install opencv
(this is a library used for image processing, and computer vision), and use the cv2.resize
function. And for instance use:
import cv2
import numpy as np
img = cv2.imread('your_image.jpg')
res = cv2.resize(img, dsize=(54, 140), interpolation=cv2.INTER_CUBIC)
Here img
is thus a numpy array containing the original image, whereas res
is a numpy array containing the resized image. An important aspect is the interpolation
parameter: there are several ways how to resize an image. Especially since you scale down the image, and the size of the original image is not a multiple of the size of the resized image. Possible interpolation schemas are:
INTER_NEAREST
- a nearest-neighbor interpolationINTER_LINEAR
- a bilinear interpolation (used by default)INTER_AREA
- resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to theINTER_NEAREST
method.INTER_CUBIC
- a bicubic interpolation over 4x4 pixel neighborhoodINTER_LANCZOS4
- a Lanczos interpolation over 8x8 pixel neighborhood
Like with most options, there is no "best" option in the sense that for every resize schema, there are scenarios where one strategy can be preferred over another.
While it might be possible to use numpy alone to do this, the operation is not built-in. That said, you can use scikit-image
(which is built on numpy) to do this kind of image manipulation.
Scikit-Image rescaling documentation is here.
For example, you could do the following with your image:
from skimage.transform import resize
bottle_resized = resize(bottle, (140, 54))
This will take care of things like interpolation, anti-aliasing, etc. for you.
For people coming here from Google looking for a fast way to downsample images in numpy
arrays for use in Machine Learning applications, here's a super fast method (adapted from here ). This method only works when the input dimensions are a multiple of the output dimensions.
The following examples downsample from 128x128 to 64x64 (this can be easily changed).
Channels last ordering
# large image is shape (128, 128, 3)
# small image is shape (64, 64, 3)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((output_size, bin_size,
output_size, bin_size, 3)).max(3).max(1)
Channels first ordering
# large image is shape (3, 128, 128)
# small image is shape (3, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((3, output_size, bin_size,
output_size, bin_size)).max(4).max(2)
For grayscale images just change the 3
to a 1
like this:
Channels first ordering
# large image is shape (1, 128, 128)
# small image is shape (1, 64, 64)
input_size = 128
output_size = 64
bin_size = input_size // output_size
small_image = large_image.reshape((1, output_size, bin_size,
output_size, bin_size)).max(4).max(2)
This method uses the equivalent of max pooling. It's the fastest way to do this that I've found.
If anyone came here looking for a simple method to scale/resize an image in Python, without using additional libraries, here's a very simple image resize function:
#simple image scaling to (nR x nC) size
def scale(im, nR, nC):
nR0 = len(im) # source number of rows
nC0 = len(im[0]) # source number of columns
return [[ im[int(nR0 * r / nR)][int(nC0 * c / nC)]
for c in range(nC)] for r in range(nR)]
Example usage: resizing a (30 x 30) image to (100 x 200):
import matplotlib.pyplot as plt
def sqr(x):
return x*x
def f(r, c, nR, nC):
return 1.0 if sqr(c - nC/2) + sqr(r - nR/2) < sqr(nC/4) else 0.0
# a red circle on a canvas of size (nR x nC)
def circ(nR, nC):
return [[ [f(r, c, nR, nC), 0, 0]
for c in range(nC)] for r in range(nR)]
plt.imshow(scale(circ(30, 30), 100, 200))
Output:
This works to shrink/scale images, and works fine with numpy arrays.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With