import numpy as np
data = np.array(['b','b','b','a','a','a','a','c','c','d','d','d'])
I need to replace each group of strings with an integer incrementally like this
data = np.array([0,0,0,1,1,1,1,2,2,3,3,3])
I'm looking for a numpy solution
With this dataset http://www.uploadmb.com/dw.php?id=1364341573
import numpy as np
f = open('test.txt','r')
lines = np.array([ line.strip() for line in f.readlines() ])
lines100 = lines[0:100]
_, ind, inv = np.unique(lines100, return_index=True, return_inverse=True)
print ind
print inv
nums = np.argsort(ind)[inv]
print nums
[ 0 83 62 40 19]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]
lines200 = lines[0:200]
_, ind, inv = np.unique(lines200, return_index=True, return_inverse=True)
print ind
print inv
nums = np.argsort(ind)[inv]
print nums
[167 0 83 124 104 144 185 62 40 19]
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6]
[9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]
EDIT: This doesn't always work:
>>> a,b,c = np.unique(data, return_index=True, return_inverse=True)
>>> c # almost!!!
array([1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 3, 3])
>>> np.argsort(b)[c]
array([0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3], dtype=int64)
But this does work:
def replace_groups(data):
a,b,c, = np.unique(data, True, True)
_, ret = np.unique(b[c], False, True)
return ret
and is faster than the dictionary replacement approach, about 33% for larger datasets:
def replace_groups_dict(data):
_, ind = np.unique(data, return_index=True)
unqs = data[np.sort(ind)]
data_id = dict(zip(unqs, np.arange(data.size)))
num = np.array([data_id[datum] for datum in data])
return num
In [7]: %timeit replace_groups_dict(lines100)
10000 loops, best of 3: 68.8 us per loop
In [8]: %timeit replace_groups_dict(lines200)
10000 loops, best of 3: 106 us per loop
In [9]: %timeit replace_groups_dict(lines)
10 loops, best of 3: 32.1 ms per loop
In [10]: %timeit replace_groups(lines100)
10000 loops, best of 3: 67.1 us per loop
In [11]: %timeit replace_groups(lines200)
10000 loops, best of 3: 78.4 us per loop
In [12]: %timeit replace_groups(lines)
10 loops, best of 3: 23.1 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With