I have a structured array, for example:
import numpy as np
orig_type = np.dtype([('Col1', '<u4'), ('Col2', '<i4'), ('Col3', '<f8')])
sa = np.empty(4, dtype=orig_type)
where sa looks like (random data):
array([(11772880L, 14527168, 1.079593371731406e-307),
       (14528064L, 21648608, 1.9202565460908188e-302),
       (21651072L, 21647712, 1.113579933986867e-305),
       (10374784L, 1918987381, 3.4871913811200906e-304)], 
      dtype=[('Col1', '<u4'), ('Col2', '<i4'), ('Col3', '<f8')])
Now, in my program, I somehow decide that I need to change the data type of 'Col2' to a string. How can I modify the dtype to do this, for example the non-programmatic way:
new_type = np.dtype([('Col1', '<u4'), ('Col2', '|S10'), ('Col3', '<f8')])
new_sa = sa.astype(new_type)
where new_sa now looks like, which is great:
array([(11772880L, '14527168', 1.079593371731406e-307),
       (14528064L, '21648608', 1.9202565460908188e-302),
       (21651072L, '21647712', 1.113579933986867e-305),
       (10374784L, '1918987381', 3.4871913811200906e-304)], 
      dtype=[('Col1', '<u4'), ('Col2', '|S10'), ('Col3', '<f8')])
How do I programmatically modify orig_type to new_type? (don't worry about the length |S10). Is there an "easy" way, or do I need a for-loop to construct a new dtype constructor object?
There is no shortcut. You would just construct the new dtype however you like and use .astype().
If your question actually aims at how to construct the new dtype object from the old one, this may be what you are looking for:
orig_type = sa.dtype
descr = orig_type.descr
descr[1] = (descr[1][0], "|S10")
new_type = numpy.dtype(descr)
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With