I am trying to join two numpy arrays. In one I have a set of columns/features after running TF-IDF on a single column of text. In the other I have one column/feature which is an integer. So I read in a column of train and test data, run TF-IDF on this, and then I want to add another integer column because I think this will help my classifier learn more accurately how it should behave.
Unfortunately, I am getting the error in the title when I try and run hstack
to add this single column to my other numpy array.
Here is my code :
#reading in test/train data for TF-IDF
traindata = list(np.array(p.read_csv('FinalCSVFin.csv', delimiter=";"))[:,2])
testdata = list(np.array(p.read_csv('FinalTestCSVFin.csv', delimiter=";"))[:,2])
#reading in labels for training
y = np.array(p.read_csv('FinalCSVFin.csv', delimiter=";"))[:,-2]
#reading in single integer column to join
AlexaTrainData = p.read_csv('FinalCSVFin.csv', delimiter=";")[["alexarank"]]
AlexaTestData = p.read_csv('FinalTestCSVFin.csv', delimiter=";")[["alexarank"]]
AllAlexaAndGoogleInfo = AlexaTestData.append(AlexaTrainData)
tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode',
analyzer='word',token_pattern=r'\w{1,}',ngram_range=(1, 2), use_idf=1,smooth_idf=1,sublinear_tf=1) #tf-idf object
rd = lm.LogisticRegression(penalty='l2', dual=True, tol=0.0001,
C=1, fit_intercept=True, intercept_scaling=1.0,
class_weight=None, random_state=None) #Classifier
X_all = traindata + testdata #adding test and train data to put into tf-idf
lentrain = len(traindata) #find length of train data
tfv.fit(X_all) #fit tf-idf on all our text
X_all = tfv.transform(X_all) #transform it
X = X_all[:lentrain] #reduce to size of training set
AllAlexaAndGoogleInfo = AllAlexaAndGoogleInfo[:lentrain] #reduce to size of training set
X_test = X_all[lentrain:] #reduce to size of training set
#printing debug info, output below :
print "X.shape => " + str(X.shape)
print "AllAlexaAndGoogleInfo.shape => " + str(AllAlexaAndGoogleInfo.shape)
print "X_all.shape => " + str(X_all.shape)
#line we get error on
X = np.hstack((X, AllAlexaAndGoogleInfo))
Below is the output and error message :
X.shape => (7395, 238377)
AllAlexaAndGoogleInfo.shape => (7395, 1)
X_all.shape => (10566, 238377)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-12-2b310887b5e4> in <module>()
31 print "X_all.shape => " + str(X_all.shape)
32 #X = np.column_stack((X, AllAlexaAndGoogleInfo))
---> 33 X = np.hstack((X, AllAlexaAndGoogleInfo))
34 sc = preprocessing.StandardScaler().fit(X)
35 X = sc.transform(X)
C:\Users\Simon\Anaconda\lib\site-packages\numpy\core\shape_base.pyc in hstack(tup)
271 # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
272 if arrs[0].ndim == 1:
--> 273 return _nx.concatenate(arrs, 0)
274 else:
275 return _nx.concatenate(arrs, 1)
ValueError: all the input arrays must have same number of dimensions
What is causing my problem here? How can I fix this? As far as I can see I should be able to join these columns? What have I misunderstood?
Thank you.
Edit :
Using the method in the answer below gets the following error :
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-16-640ef6dd335d> in <module>()
---> 36 X = np.column_stack((X, AllAlexaAndGoogleInfo))
37 sc = preprocessing.StandardScaler().fit(X)
38 X = sc.transform(X)
C:\Users\Simon\Anaconda\lib\site-packages\numpy\lib\shape_base.pyc in column_stack(tup)
294 arr = array(arr,copy=False,subok=True,ndmin=2).T
295 arrays.append(arr)
--> 296 return _nx.concatenate(arrays,1)
297
298 def dstack(tup):
ValueError: all the input array dimensions except for the concatenation axis must match exactly
Interestingly, I tried to print the dtype
of X and this worked fine :
X.dtype => float64
However, trying to print the dtype of AllAlexaAndGoogleInfo
like so :
print "AllAlexaAndGoogleInfo.dtype => " + str(AllAlexaAndGoogleInfo.dtype)
produces :
'DataFrame' object has no attribute 'dtype'
The Python "IndexError: too many indices for array" occurs when we specify too many index values when accessing a one-dimensional numpy array. To solve the error, declare a two-dimensional array or correct the index accessor.
You can either reshape it array_2. reshape(-1,1) , or add a new axis array_2[:,np. newaxis] to make it 2 dimensional before concatenation.
numpy.r_[array[], array[]] This is used to concatenate any number of array slices along row (first) axis. This is a simple way to create numpy arrays quickly and efficiently.
As X
is a sparse array, instead of numpy.hstack
, use scipy.sparse.hstack
to join the arrays. In my opinion the error message is kind of misleading here.
This minimal example illustrates the situation:
import numpy as np
from scipy import sparse
X = sparse.rand(10, 10000)
xt = np.random.random((10, 1))
print 'X shape:', X.shape
print 'xt shape:', xt.shape
print 'Stacked shape:', np.hstack((X,xt)).shape
#print 'Stacked shape:', sparse.hstack((X,xt)).shape #This works
Based on the following output
X shape: (10, 10000)
xt shape: (10, 1)
one may expect that the hstack
in the following line will work, but the fact is that it throws this error:
ValueError: all the input arrays must have same number of dimensions
So, use scipy.sparse.hstack
when you have a sparse array to stack.
In fact I have answered this as a comment in your another questions, and you mentioned that another error message pops up:
TypeError: no supported conversion for types: (dtype('float64'), dtype('O'))
First of all, AllAlexaAndGoogleInfo
does not have a dtype
as it is a DataFrame
. To get it's underlying numpy array, simply use AllAlexaAndGoogleInfo.values
. Check its dtype
. Based on the error message, it has a dtype
of object
, which means that it might contain non-numerical elements like strings.
This is a minimal example that reproduces this situation:
X = sparse.rand(100, 10000)
xt = np.random.random((100, 1))
xt = xt.astype('object') # Comment this to fix the error
print 'X:', X.shape, X.dtype
print 'xt:', xt.shape, xt.dtype
print 'Stacked shape:', sparse.hstack((X,xt)).shape
The error message:
TypeError: no supported conversion for types: (dtype('float64'), dtype('O'))
So, check if there is any non-numerical values in AllAlexaAndGoogleInfo
and repair them, before doing the stacking.
Use .column_stack
. Like so:
X = np.column_stack((X, AllAlexaAndGoogleInfo))
From the docs:
Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with hstack.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With