I have a binary numpy 2D array, say,
import numpy as np
arr = np.array([
#   Col 0   Col 1  Col 2
    [False, False, True],  # Row 0
    [True, False, False],  # Row 1
    [True, True, False],  # Row 2
])
I want the row and column of each True element in the matrix:
[(0, 2), (1, 0), (2, 0), (2, 1)]
I know I can do this through iteration:
links = []
nrows, ncols = arr.shape
for i in xrange(nrows):
    for j in xrange(ncols):
        if arr[i, j]:
            links.append((i, j))
Is there a faster or more intuitive way?
You are looking for np.argwhere -
np.argwhere(arr)
Sample run -
In [220]: arr
Out[220]: 
array([[False, False,  True],
       [ True, False, False],
       [ True,  True, False]], dtype=bool)
In [221]: np.argwhere(arr)
Out[221]: 
array([[0, 2],
       [1, 0],
       [2, 0],
       [2, 1]])
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With