I have a 2D Numpy array that contains some nan
values. Simplified example:
arr = np.array([[3, 5, np.nan, 2, 4],
[9, 1, 3, 5, 1],
[8, np.nan, 3, np.nan, 7]])
which looks like this in console output:
array([[ 3., 5., nan, 2., 4.],
[ 9., 1., 3., 5., 1.],
[ 8., nan, 3., nan, 7.]])
I am looking for a good way to set all values to the right of existing nan
values to nan
as well. In other words, I need to convert the example array to this:
array([[ 3., 5., nan, nan, nan],
[ 9., 1., 3., 5., 1.],
[ 8., nan, nan, nan, nan]])
I know how to accomplish this with loops, but I would imagine that a method that uses only Numpy vectorized operations would be much more efficient. Is there anyone who could help me find such a method?
One approach with cumsum
and boolean-indexing
-
arr[np.isnan(arr).cumsum(1)>0] = np.nan
For performance, it might be better to use np.maximum.accumulate
-
arr[np.maximum.accumulate(np.isnan(arr),axis=1)] = np.nan
One more way with a bit twisted use of broadcasting
-
n = arr.shape[1]
mask = np.isnan(arr)
idx = mask.argmax(1)
idx[~mask.any(1)] = n
arr[idx[:,None] <= np.arange(n)] = np.nan
Sample run -
In [96]: arr
Out[96]:
array([[ 3., 5., nan, 2., 4.],
[ 9., 1., 3., 5., 1.],
[ 8., nan, 3., nan, 7.]])
In [97]: arr[np.maximum.accumulate(np.isnan(arr),axis=1)] = np.nan
In [98]: arr
Out[98]:
array([[ 3., 5., nan, nan, nan],
[ 9., 1., 3., 5., 1.],
[ 8., nan, nan, nan, nan]])
Benchmarking
Approaches -
def func1(arr):
arr[np.isnan(arr).cumsum(1)>0] = np.nan
def func2(arr):
arr[np.maximum.accumulate(np.isnan(arr),axis=1)] = np.nan
def func3(arr): # @ MSeifert's suggestion
mask = np.isnan(arr);
accmask = np.cumsum(mask, out=mask, axis=1);
arr[accmask] = np.nan
def func4(arr):
mask = np.isnan(arr);
np.maximum.accumulate(mask,axis=1, out = mask)
arr[mask] = np.nan
def func5(arr):
n = arr.shape[1]
mask = np.isnan(arr)
idx = mask.argmax(1)
idx[~mask.any(1)] = n
arr[idx[:,None] <= np.arange(n)] = np.nan
Timings -
In [201]: # Setup inputs
...: arr = np.random.rand(5000,5000)
...: arr.ravel()[np.random.choice(range(arr.size), 10000, replace=0)] = np.nan
...: arr1 = arr.copy()
...: arr2 = arr.copy()
...: arr3 = arr.copy()
...: arr4 = arr.copy()
...: arr5 = arr.copy()
...:
In [202]: %timeit func1(arr1)
...: %timeit func2(arr2)
...: %timeit func3(arr3)
...: %timeit func4(arr4)
...: %timeit func5(arr5)
...:
10 loops, best of 3: 149 ms per loop
10 loops, best of 3: 90.5 ms per loop
10 loops, best of 3: 88.8 ms per loop
10 loops, best of 3: 88.5 ms per loop
10 loops, best of 3: 75.3 ms per loop
Broadcasting based one seems to be doing quite well!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With