Method 1: Using ave() function Call the ave() function, which is a base function of the R language, and pass the required parameters to this function and this process will be leading to the numbering rows within the group of the given dataframe in the R programming language.
To get number of rows in R Data Frame, call the nrow() function and pass the data frame as argument to this function. nrow() is a function in R base package.
To Generate Row number to the dataframe in R we will be using seq.int() function. Seq.int() function along with nrow() is used to generate row number to the dataframe in R. We can also use row_number() function to generate row index.
`. rowNamesDF<-` is a (non-generic replacement) function to set row names for data frames, with extra argument make.
Use ave
, ddply
, dplyr
or data.table
:
df$num <- ave(df$val, df$cat, FUN = seq_along)
or:
library(plyr)
ddply(df, .(cat), mutate, id = seq_along(val))
or:
library(dplyr)
df %>% group_by(cat) %>% mutate(id = row_number())
or (the most memory efficient, as it assigns by reference within DT
):
library(data.table)
DT <- data.table(df)
DT[, id := seq_len(.N), by = cat]
DT[, id := rowid(cat)]
For making this r-faq question more complete, a base R alternative with sequence
and rle
:
df$num <- sequence(rle(df$cat)$lengths)
which gives the intended result:
> df cat val num 4 aaa 0.05638315 1 2 aaa 0.25767250 2 1 aaa 0.30776611 3 5 aaa 0.46854928 4 3 aaa 0.55232243 5 10 bbb 0.17026205 1 8 bbb 0.37032054 2 6 bbb 0.48377074 3 9 bbb 0.54655860 4 7 bbb 0.81240262 5 13 ccc 0.28035384 1 14 ccc 0.39848790 2 11 ccc 0.62499648 3 15 ccc 0.76255108 4 12 ccc 0.88216552 5
If df$cat
is a factor variable, you need to wrap it in as.character
first:
df$num <- sequence(rle(as.character(df$cat))$lengths)
Here is a small improvement trick that allows sort 'val' inside the groups:
# 1. Data set
set.seed(100)
df <- data.frame(
cat = c(rep("aaa", 5), rep("ccc", 5), rep("bbb", 5)),
val = runif(15))
# 2. 'dplyr' approach
df %>%
arrange(cat, val) %>%
group_by(cat) %>%
mutate(id = row_number())
Another dplyr
possibility could be:
df %>%
group_by(cat) %>%
mutate(num = 1:n())
cat val num
<fct> <dbl> <int>
1 aaa 0.0564 1
2 aaa 0.258 2
3 aaa 0.308 3
4 aaa 0.469 4
5 aaa 0.552 5
6 bbb 0.170 1
7 bbb 0.370 2
8 bbb 0.484 3
9 bbb 0.547 4
10 bbb 0.812 5
11 ccc 0.280 1
12 ccc 0.398 2
13 ccc 0.625 3
14 ccc 0.763 4
15 ccc 0.882 5
I would like to add a data.table
variant using the rank()
function which provides the additional possibility to change the ordering and thus makes it a bit more flexible than the seq_len()
solution and is pretty similar to row_number functions in RDBMS.
# Variant with ascending ordering
library(data.table)
dt <- data.table(df)
dt[, .( val
, num = rank(val))
, by = list(cat)][order(cat, num),]
cat val num
1: aaa 0.05638315 1
2: aaa 0.25767250 2
3: aaa 0.30776611 3
4: aaa 0.46854928 4
5: aaa 0.55232243 5
6: bbb 0.17026205 1
7: bbb 0.37032054 2
8: bbb 0.48377074 3
9: bbb 0.54655860 4
10: bbb 0.81240262 5
11: ccc 0.28035384 1
12: ccc 0.39848790 2
13: ccc 0.62499648 3
14: ccc 0.76255108 4
# Variant with descending ordering
dt[, .( val
, num = rank(desc(val)))
, by = list(cat)][order(cat, num),]
Edit on 2021-04-16 to make the switch between descending and ascending order more fail-safe
Here is an option using a for
loop by groups rather by rows (like OP did)
for (i in unique(df$cat)) df$num[df$cat == i] <- seq_len(sum(df$cat == i))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With