I am merging two data frames using pandas.merge
. Even after specifying how = left
option, I found the number of rows of merged data frame is larger than the original. Why does this happen?
panel = pd.read_csv(file1, encoding ='cp932')
before_len = len(panel)
prof_2000 = pd.read_csv(file2, encoding ='cp932').drop_duplicates()
temp_2000 = pd.merge(panel, prof_2000, left_on='Candidate_u', right_on="name2", how="left")
after_len = len(temp_2000)
print(before_len, after_len)
> 12661 13915
This sounds like having more than one rows in right
under 'name2'
that match the key you have set for the left
. Using option 'how='left'
with pandas.DataFrame.merge()
only means that:
- left: use only keys from left frame
However, the actual number of rows in the result object is not necessarily going to be the same as the number of rows in the left
object.
Example:
In [359]: df_1
Out[359]:
A B
0 a AAA
1 b BBA
2 c CCF
and then another DF that looks like this (notice that there are more than one entry for your desired key on the left):
In [360]: df_3
Out[360]:
key value
0 a 1
1 a 2
2 b 3
3 a 4
If I merge these two on left.A
, here's what happens:
In [361]: df_1.merge(df_3, how='left', left_on='A', right_on='key')
Out[361]:
A B key value
0 a AAA a 1.0
1 a AAA a 2.0
2 a AAA a 4.0
3 b BBA b 3.0
4 c CCF NaN NaN
This happened even though I merged with how='left'
as you can see above, there were simply more than one rows to merge and as shown here the result pd.DataFrame
has in fact more rows than the pd.DataFrame
on the left
.
I hope this helps!
The problem of doubling of rows after each merge()
(of any type, 'both' or 'left') is usually caused by duplicates in any of the keys, so we need to drop them first:
left_df.drop_duplicates(subset=left_key, inplace=True)
right_df.drop_duplicates(subset=right_key, inplace=True)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With