In TensorFlow, is there any function to something I can do to find out the amount of learning parameters in my network?
No function I am aware of, but you can still count yourself using a for loop on the tf.trainable_variables():
total_parameters = 0
for variable in tf.trainable_variables():
variable_parameters = 1
for dim in variable.get_shape():
variable_parameters *= dim.value
total_parameters += variable_parameters
print("Total number of trainable parameters: %d" % total_parameters)
You can do this with a simple one-liner:
np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])
If you need a little bit more details, here is a helper function I use to see all the trainable parameters:
def show_params():
total = 0
for v in tf.trainable_variables():
dims = v.get_shape().as_list()
num = int(np.prod(dims))
total += num
print(' %s \t\t Num: %d \t\t Shape %s ' % (v.name, num, dims))
print('\nTotal number of params: %d' % total)
It prints you information like this:
params/weights/W1:0 Num: 34992 Shape [3, 3, 18, 216]
params/weights/W2:0 Num: 839808 Shape [3, 3, 216, 432]
params/weights/W3:0 Num: 839808 Shape [3, 3, 432, 216]
params/weights/W4:0 Num: 57856 Shape [226, 256]
params/weights/W5:0 Num: 32768 Shape [256, 128]
params/weights/W6:0 Num: 8192 Shape [128, 64]
params/weights/W7:0 Num: 64 Shape [64, 1]
params/biases/b1:0 Num: 216 Shape [216]
params/biases/b2:0 Num: 432 Shape [432]
params/biases/b3:0 Num: 216 Shape [216]
params/biases/b4:0 Num: 256 Shape [256]
params/biases/b5:0 Num: 128 Shape [128]
params/biases/b6:0 Num: 64 Shape [64]
params/biases/b7:0 Num: 1 Shape [1]
Total number of params: 1814801
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With