We have a vectorial numpy get_pos_neg_bitwise function that use a mask=[132 20 192] and a df.shape of (500e3, 4) that we want to accelerate with numba.
from numba import jit
import numpy as np
from time import time
def get_pos_neg_bitwise(df, mask):
"""
In [1]: print mask
[132 20 192]
In [1]: print df
[[ 1 162 97 41]
[ 0 136 135 171]
...,
[ 0 245 30 73]]
"""
check = (np.bitwise_and(mask, df[:, 1:]) == mask).all(axis=1)
pos = (df[:, 0] == 1) & check
neg = (df[:, 0] == 0) & check
pos = np.nonzero(pos)[0]
neg = np.nonzero(neg)[0]
return (pos, neg)
Using tips from @morningsun we made this numba version:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
posneg = np.zeros((df.shape[0], 2))
for idx in range(df.shape[0]):
vandmask = np.bitwise_and(df[idx, 1:], mask)
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i, val in enumerate(vandmask):
if val != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
posneg[idx, 0] = 1
else:
posneg[idx, 1] = 1
pos = list(np.nonzero(posneg[:, 0])[0])
neg = list(np.nonzero(posneg[:, 1])[0])
return (pos, neg)
But it still 3 times slower than the numpy one (~0.06s Vs ~0,02s).
if __name__ == '__main__':
df = np.array(np.random.randint(256, size=(int(500e3), 4)))
df[:, 0] = np.random.randint(2, size=(1, df.shape[0])) # set target to 0 or 1
mask = np.array([132, 20, 192])
start = time()
pos, neg = get_pos_neg_bitwise(df, mask)
msg = '==> pos, neg made; p={}, n={} in [{:.4} s] numpy'
print msg.format(len(pos), len(neg), time() - start)
start = time()
msg = '==> pos, neg made; p={}, n={} in [{:.4} s] numba'
pos, neg = numba_get_pos_neg_bitwise(df, mask)
print msg.format(len(pos), len(neg), time() - start)
start = time()
pos, neg = numba_get_pos_neg_bitwise(df, mask)
print msg.format(len(pos), len(neg), time() - start)
Am I missing something ?
In [1]: %run numba_test2.py
==> pos, neg made; p=3852, n=3957 in [0.02306 s] numpy
==> pos, neg made; p=3852, n=3957 in [0.3492 s] numba
==> pos, neg made; p=3852, n=3957 in [0.06425 s] numba
In [1]:
Try moving the call to np.bitwise_and
outside of the loop since numba can't do anything to speed it up:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
posneg = np.zeros((df.shape[0], 2))
vandmask = np.bitwise_and(df[:, 1:], mask)
for idx in range(df.shape[0]):
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i, val in enumerate(vandmask[idx]):
if val != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
posneg[idx, 0] = 1
else:
posneg[idx, 1] = 1
pos = np.nonzero(posneg[:, 0])[0]
neg = np.nonzero(posneg[:, 1])[0]
return (pos, neg)
Then I get timings of:
==> pos, neg made; p=3920, n=4023 in [0.02352 s] numpy
==> pos, neg made; p=3920, n=4023 in [0.2896 s] numba
==> pos, neg made; p=3920, n=4023 in [0.01539 s] numba
So now numba is a bit faster than numpy.
Also, it didn't make a huge difference, but in your original function you return numpy arrays, while in the numba version you were converting pos
and neg
to lists.
In general though, I would guess that the function calls are dominated by numpy functions, which numba can't speed up, and the numpy version of the code is already using fast vectorization routines.
Update:
You can make it faster by removing the enumerate
call and index directly into the array instead of grabbing a slice. Also splitting pos
and neg
into separate arrays helps to avoid slicing along a non-contiguous axis in memory:
@jit(nopython=True)
def numba_get_pos_neg_bitwise(df, mask):
pos = np.zeros(df.shape[0])
neg = np.zeros(df.shape[0])
vandmask = np.bitwise_and(df[:, 1:], mask)
for idx in range(df.shape[0]):
# numba fail with # if np.all(vandmask == mask):
vandm_equal_m = 1
for i in xrange(vandmask.shape[1]):
if vandmask[idx,i] != mask[i]:
vandm_equal_m = 0
break
if vandm_equal_m == 1:
if df[idx, 0] == 1:
pos[idx] = 1
else:
neg[idx] = 1
pos = np.nonzero(pos)[0]
neg = np.nonzero(neg)[0]
return pos, neg
And timings in an ipython notebook:
%timeit pos1, neg1 = get_pos_neg_bitwise(df, mask)
%timeit pos2, neg2 = numba_get_pos_neg_bitwise(df, mask)
100 loops, best of 3: 18.2 ms per loop
100 loops, best of 3: 7.89 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With