Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

NotImplementedError: Cannot convert a symbolic Tensor (2nd_target:0) to a numpy array

I try to pass 2 loss functions to a model as Keras allows that.

loss: String (name of objective function) or objective function or Loss instance. See losses. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.

The two loss functions:

def l_2nd(beta):
    def loss_2nd(y_true, y_pred):
        ...
        return K.mean(t)

    return loss_2nd

and

def l_1st(alpha):
    def loss_1st(y_true, y_pred):
        ...
        return alpha * 2 * tf.linalg.trace(tf.matmul(tf.matmul(Y, L, transpose_a=True), Y)) / batch_size

    return loss_1st

Then I build the model:

l2 = K.eval(l_2nd(self.beta))
l1 = K.eval(l_1st(self.alpha))
self.model.compile(opt, [l2, l1])

When I train, it produces the error:

1.15.0-rc3 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/resource_variable_ops.py:1630:
calling BaseResourceVariable.__init__ (from
tensorflow.python.ops.resource_variable_ops) with constraint is
deprecated and will be removed in a future version. Instructions for
updating: If using Keras pass *_constraint arguments to layers.
--------------------------------------------------------------------------- 
NotImplementedError                       Traceback (most recent call
last) <ipython-input-20-298384dd95ab> in <module>()
     47                          create_using=nx.DiGraph(), nodetype=None, data=[('weight', int)])
     48 
---> 49     model = SDNE(G, hidden_size=[256, 128],)
     50     model.train(batch_size=100, epochs=40, verbose=2)
     51     embeddings = model.get_embeddings()

10 frames <ipython-input-19-df29e9865105> in __init__(self, graph,
hidden_size, alpha, beta, nu1, nu2)
     72         self.A, self.L = self._create_A_L(
     73             self.graph, self.node2idx)  # Adj Matrix,L Matrix
---> 74         self.reset_model()
     75         self.inputs = [self.A, self.L]
     76         self._embeddings = {}

<ipython-input-19-df29e9865105> in reset_model(self, opt)

---> 84         self.model.compile(opt, loss=[l2, l1])
     85         self.get_embeddings()
     86 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/tracking/base.py
in _method_wrapper(self, *args, **kwargs)
    455     self._self_setattr_tracking = False  # pylint: disable=protected-access
    456     try:
--> 457       result = method(self, *args, **kwargs)
    458     finally:
    459       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access

NotImplementedError: Cannot convert a symbolic Tensor (2nd_target:0)
to a numpy array.

Please help, thanks!

like image 691
T D Nguyen Avatar asked Oct 21 '19 03:10

T D Nguyen


2 Answers

For me, the issue occurred when upgrading from numpy 1.19 to 1.20 and using ray's RLlib, which uses tensorflow 2.2 internally. Simply downgrading with

pip install numpy==1.19.5

solved the problem; the error did not occur anymore.

Update (comment by @codeananda): You can also update to a newer TensorFlow (2.6+) version now that resolves the problem (pip install -U tensorflow).

like image 167
CGFoX Avatar answered Nov 11 '22 11:11

CGFoX


I found the solution to this problem:

It was because I mixed symbolic tensor with a non-symbolic type, such as a numpy. For example. It is NOT recommended to have something like this:

def my_mse_loss_b(b):
     def mseb(y_true, y_pred):
         ...
         a = np.ones_like(y_true) #numpy array here is not recommended
         return K.mean(K.square(y_pred - y_true)) + a
     return mseb

Instead, you should convert all to symbolic tensors like this:

def my_mse_loss_b(b):
     def mseb(y_true, y_pred):
         ...
         a = K.ones_like(y_true) #use Keras instead so they are all symbolic
         return K.mean(K.square(y_pred - y_true)) + a
     return mseb

Hope this help!

like image 42
T D Nguyen Avatar answered Nov 11 '22 10:11

T D Nguyen