The following python code creates a heatmap of a matrix that contains normally distributed values
import numpy as np
from matplotlib import pylab as plt
np.random.seed(123) #make sure we all have same data
m = np.random.randn(200).reshape(10, 20)
plt.imshow(m, cmap='RdYlGn', interpolation='nearest')
plt.colorbar()
This is the output of this code
I would like to enhance the contrast of this image by "fading out" the values close to zero. I can easily do this by using disigmoid scaling of the original data as follows:
def disigmoidScaling(values, steepnessFactor=1, ref=None):
''' Sigmoid scaling in which values around a reference point are flattened
arround a reference point
Scaled value y is calculated as
y = sign(v - d)(1 - exp(-((x - d)/s)**2)))
where v is the original value, d is the referenc point and s is the
steepness factor
'''
if ref is None:
mn = np.min(values)
mx = np.max(values)
ref = mn + (mx - mn) / 2.0
sgn = np.sign(values - ref)
term1 = ((values - ref)/steepnessFactor) ** 2
term2 = np.exp(- term1)
term3 = 1.0 - term2
return sgn * term3
plt.imshow(disigmoidScaling(m, 4), cmap='RdYlGn', interpolation='nearest')
plt.colorbar()
Here is the output.
I'm pleased with the result, except the fact that in this version the original values have been exchanged for scaled ones.
Is there a way to perform a non-linear mapping of values to colormap?
A colormap contains a dictionary of red, green and blue values mapped over the interval [0,1]. The Linear Segmented Colormap class docs give the example
cdict = {'red': [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'green': [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'blue': [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}
"Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output value of a given color will be linearly interpolated between y1[i] and y0[i+1]:"
The RdYlGn
colormap has 11 x values for each color going from 0 to 1.0 in steps of 0.1. You can get the cdict
values by calling
plt.cm.RdYlGn._segmentdata
You can then change the x values to whatever steps you want (as long as they are monotonically increasing and range from 0 to 1) and get a new colormap by calling matplotlib.colors.LinearSegmentedColormap
on your new cdict
. There are several great examples of this in the Matplotlib Cookbook.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With