My neural network is not giving the expected output after training in Python. Is there any error in the code? Is there any way to reduce the mean squared error (MSE)?
I tried to train (Run the program) the network repeatedly but it is not learning, instead it is giving the same MSE and output.
Here is the Data I used:
https://drive.google.com/open?id=1GLm87-5E_6YhUIPZ_CtQLV9F9wcGaTj2
Here is my code:
#load and evaluate a saved model
from numpy import loadtxt
from tensorflow.keras.models import load_model
# load model
model = load_model('ANNnew.h5')
# summarize model.
model.summary()
#Model starts
import numpy as np
import pandas as pd
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Importing the dataset
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Initialising the ANN
model = Sequential()
# Adding the input layer and the first hidden layer
model.add(Dense(32, activation = 'tanh', input_dim = 4))
# Adding the second hidden layer
model.add(Dense(units = 18, activation = 'tanh'))
# Adding the third hidden layer
model.add(Dense(units = 32, activation = 'tanh'))
#model.add(Dense(1))
model.add(Dense(units = 1))
# Compiling the ANN
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
# Fitting the ANN to the Training set
model.fit(X_train, y_train, batch_size = 100, epochs = 1000)
y_pred = model.predict(X_test)
for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))
plt.plot(y_test, color = 'red', label = 'Test data')
plt.plot(y_pred, color = 'blue', label = 'Predicted data')
plt.title('Prediction')
plt.legend()
plt.show()
# save model and architecture to single file
model.save("ANNnew.h5")
print("Saved model to disk")
You do not have enough data. A good rule of thumb is that for every feature, multiply the minimal amount of data by 10. If you do not reach the data threshold, it might not be possible to train a Neural Network on the data. You could try to generate synthetic data, but it could alter the integrity of the data.
Your model is underfitting. It is caused due to insufficient dense layers and neurons. There are many ways to prevent to the underfitting such as, Increasing the number of Convolutional and Dense layers.
(A) Training and validation losses do not decrease; the model is not learning due to no information in the data or insufficient capacity of the model. (B) Training loss decreases while validation loss increases: overfitting.
I have noticed one minor mistake in your reporting through print - instead of:
for i in range(5):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y[i].tolist()))
you should have:
for i in range(len(y_test)):
print('%s => %d (expected %s)' % (X[i].tolist(), y_pred[i], y_test[i].tolist()))
At this print you will finally compare prediction for test with true for test (previously you were comparing prediction for test with true for first 5 observations in array y), and for all 6 observation in test, not just 5 :-)
What you should also monitor is model quality on train data. Being extremely simplistic, for clarity of this case:
In general, for achieving the ultimate goal of finding the best NN that can be generalized, it is a good practice to use either validation_split or validation_data in model.fit call.
Imports
# imports
import numpy as np
import pandas as pd
import os
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.models import Sequential
from tensorflow import set_random_seed
from tensorflow.keras.initializers import glorot_uniform
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from importlib import reload
Useful functions
# useful pandas display settings
pd.options.display.float_format = '{:.3f}'.format
# useful functions
def plot_history(history, metrics_to_plot):
"""
Function plots history of selected metrics for fitted neural net.
"""
# plot
for metric in metrics_to_plot:
plt.plot(history.history[metric])
# name X axis informatively
plt.xlabel('epoch')
# name Y axis informatively
plt.ylabel('metric')
# add informative legend
plt.legend(metrics_to_plot)
# plot
plt.show()
def plot_fit(y_true, y_pred, title='title'):
"""
Function plots true values and predicted values, sorted in increase order by true values.
"""
# create one dataframe with true values and predicted values
results = y_true.reset_index(drop=True).merge(pd.DataFrame(y_pred), left_index=True, right_index=True)
# rename columns informartively
results.columns = ['true', 'prediction']
# sort for clarity of visualization
results = results.sort_values(by=['true']).reset_index(drop=True)
# plot true values vs predicted values
results.plot()
# adding scatter on line plots
plt.scatter(results.index, results.true, s=5)
plt.scatter(results.index, results.prediction, s=5)
# name X axis informatively
plt.xlabel('obs sorted in ascending order with respect to true values')
# add customizable title
plt.title(title)
# plot
plt.show();
def reset_all_randomness():
"""
Function assures reproducibility of NN estimation results.
"""
# reloads
reload(tf)
reload(np)
reload(random)
# seeds - for reproducibility
os.environ['PYTHONHASHSEED']=str(984797)
random.seed(984797)
set_random_seed(984797)
np.random.seed(984797)
my_init = glorot_uniform(seed=984797)
return my_init
Load X and y from file
X = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet1").values
y = pd.read_excel(r"C:\filelocation\Data.xlsx","Sheet2").values
Splitting X and y into the Training set and Test set
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.08, random_state = 0)
Feature Scaling
# Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
Model0 - try overfitting on train data and verify overfitting
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model0
# Initialising the ANN
model0 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))
# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))
# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))
# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))
# Adding output layer
model0.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)
# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)
# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)
# check what metrics are in fact available in history
history.history.keys()
dict_keys(['val_loss', 'val_mean_squared_error', 'val_mean_absolute_error', 'loss', 'mean_squared_error', 'mean_absolute_error'])
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])
# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model0[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
[1000.0, 25.0, 2235.3, 1.0] => [2.2463024] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.6396966] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [5.6486473] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.852657] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.9801836] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [5.761505] (expected [6])
MSE on train data is: 0.1629941761493683
MSE on test data is: 1.9077353477478027
With this result, let's assume over-fitting succeeded.
Look for valuable features (transformations of data you have)
# augment features by calculating absolute values and squares of original features
X_train = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_train])
X_test = np.array([list(x) + list(np.abs(x)) + list(x**2) for x in X_test])
Model1 - with 8 additional features, 12 inputs overall (instead of 4)
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model1
# Initialising the ANN
model1 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model1.add(Dense(units = 128, activation = 'tanh', input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model1.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))
# Adding 3 hidden layer
model1.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))
# Adding 4 hidden layer
model1.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))
# Adding output layer
model1.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)
# Compiling the ANN
model1.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model1.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000)
# Generate prediction for both Train and Valid set
y_train_pred_model1 = model1.predict(X_train)
y_test_pred_model1 = model1.predict(X_test)
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])
# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model1[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model1, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model1, 'Fit on test data')
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
[1000.0, 25.0, 2235.3, 1.0] => [2.5696845] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [5.0152197] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.4963903] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [5.004753] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.982211] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [6.158882] (expected [6])
MSE on train data is: 0.17548464238643646
MSE on test data is: 1.4240833520889282
Model2 - grid-search experiments with 2-hidden-layers NNs Addressing:
play with NN architecture (layer1_neurons, layer2_neurons, activation_function)
play with NN estimation process (learning_rate, beta1, beta2)
# init experiment_results
experiment_results = []
# the experiment
for layer1_neurons in [4, 8, 16,32 ]:
for layer2_neurons in [4, 8, 16, 32]:
for activation_function in ['tanh', 'relu']:
for learning_rate in [0.01, 0.001]:
for beta1 in [0.9]:
for beta2 in [0.99]:
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model2
# Initialising the ANN
model2 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model2.add(Dense(units = layer1_neurons, activation = activation_function, input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model2.add(Dense(units = layer2_neurons, activation = activation_function, kernel_initializer=my_init))
# Adding output layer
model2.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1, beta2=beta2)
# Compiling the ANN
model2.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model2.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 1000, verbose=0)
# Generate prediction for both Train and Valid set
y_train_pred_model2 = model2.predict(X_train)
y_test_pred_model2 = model2.predict(X_test)
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
# create data you want to save for each processed NN
partial_results = \
{
'layer1_neurons': layer1_neurons,
'layer2_neurons': layer2_neurons,
'activation_function': activation_function,
'learning_rate': learning_rate,
'beta1': beta1,
'beta2': beta2,
'final_train_mean_squared_error': history.history['mean_squared_error'][-1],
'final_val_mean_squared_error': history.history['val_mean_squared_error'][-1],
'best_train_epoch': history.history['mean_squared_error'].index(min(history.history['mean_squared_error'])),
'best_train_mean_squared_error': np.min(history.history['mean_squared_error']),
'best_val_epoch': history.history['val_mean_squared_error'].index(min(history.history['val_mean_squared_error'])),
'best_val_mean_squared_error': np.min(history.history['val_mean_squared_error']),
}
experiment_results.append(
partial_results
)
Explore experiment results:
# put experiment_results into DataFrame
experiment_results_df = pd.DataFrame(experiment_results)
# identifying models hopefully not too much overfitted to valid data at the end of estimation (after 1000 epochs) :
experiment_results_df['valid'] = experiment_results_df['final_val_mean_squared_error'] > experiment_results_df['final_train_mean_squared_error']
# display the best combinations of parameters for valid data, which seems not overfitted
experiment_results_df[experiment_results_df['valid']].sort_values(by=['final_val_mean_squared_error']).head()
layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 final_train_mean_squared_error final_val_mean_squared_error best_train_epoch best_train_mean_squared_error best_val_epoch best_val_mean_squared_error valid
26 8 16 relu 0.010 0.900 0.990 0.992 1.232 998 0.992 883 1.117 True
36 16 8 tanh 0.010 0.900 0.990 0.178 1.345 998 0.176 40 1.245 True
14 4 32 relu 0.010 0.900 0.990 1.320 1.378 980 1.300 98 0.937 True
2 4 4 relu 0.010 0.900 0.990 1.132 1.419 996 1.131 695 1.002 True
57 32 16 tanh 0.001 0.900 0.990 1.282 1.432 999 1.282 999 1.432 True
You can do slightly better if you take into account whole training history:
# for each NN estimation identify dictionary of epochs for which NN was not overfitted towards valid data
# for each such epoch I store its number and corresponding mean_squared_error on valid data
experiment_results_df['not_overfitted_epochs_on_valid'] = \
experiment_results_df.apply(
lambda row:
{
i: row['val_mean_squared_error_history'][i]
for i in range(len(row['train_mean_squared_error_history']))
if row['val_mean_squared_error_history'][i] > row['train_mean_squared_error_history'][i]
},
axis=1
)
# basing on previosuly prepared dict, for each NN estimation I can identify:
# best not overfitted mse value on valid data and corresponding best not overfitted epoch on valid data
experiment_results_df['best_not_overfitted_mse_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: np.min(list(x.values())) if len(list(x.values()))>0 else np.NaN
)
experiment_results_df['best_not_overfitted_epoch_on_valid'] = \
experiment_results_df['not_overfitted_epochs_on_valid'].apply(
lambda x: list(x.keys())[list(x.values()).index(np.min(list(x.values())))] if len(list(x.values()))>0 else np.NaN
)
# now I can sort all estimations according to best not overfitted mse on valid data overall, not only at the end of estimation
experiment_results_df.sort_values(by=['best_not_overfitted_mse_on_valid'])[[
'layer1_neurons','layer2_neurons','activation_function','learning_rate','beta1','beta2',
'best_not_overfitted_mse_on_valid','best_not_overfitted_epoch_on_valid'
]].head()
layer1_neurons layer2_neurons activation_function learning_rate beta1 beta2 best_not_overfitted_mse_on_valid best_not_overfitted_epoch_on_valid
26 8 16 relu 0.010 0.900 0.990 1.117 883.000
54 32 8 relu 0.010 0.900 0.990 1.141 717.000
50 32 4 relu 0.010 0.900 0.990 1.210 411.000
36 16 8 tanh 0.010 0.900 0.990 1.246 821.000
56 32 16 tanh 0.010 0.900 0.990 1.264 693.000
Now I record top estimation combination for final model estimation:
Model3 - final model
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# model3
# Initialising the ANN
model3 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model3.add(Dense(units = 8, activation = 'relu', input_dim = 12, kernel_initializer=my_init))
# Adding 2 hidden layer
model3.add(Dense(units = 16, activation = 'relu', kernel_initializer=my_init))
# Adding output layer
model3.add(Dense(units = 1, kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.010, beta1=0.900, beta2=0.990)
# Compiling the ANN
model3.compile(optimizer = Optimizer, loss = 'mean_squared_error', metrics=['mse','mae'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model3.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size = 100, epochs = 884)
# Generate prediction for both Train and Valid set
y_train_pred_model3 = model3.predict(X_train)
y_test_pred_model3 = model3.predict(X_test)
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['mean_absolute_error', 'val_mean_absolute_error'])
# look at model fit quality
for i in range(len(y_test)):
print('%s => %s (expected %s)' % (X[i].tolist(), y_test_pred_model3[i], y_test[i]))
plot_fit(pd.DataFrame(y_train), y_train_pred_model3, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model3, 'Fit on test data')
print('MSE on train data is: {}'.format(history.history['mean_squared_error'][-1]))
print('MSE on test data is: {}'.format(history.history['val_mean_squared_error'][-1]))
[1000.0, 25.0, 2235.3, 1.0] => [1.8813248] (expected [3])
[1000.0, 30.0, 2190.1, 1.0] => [4.3430963] (expected [3])
[1000.0, 35.0, 2144.7, 1.0] => [4.827326] (expected [5])
[1000.0, 40.0, 2098.9, 1.0] => [4.6029215] (expected [3])
[1000.0, 45.0, 2052.9, 1.0] => [3.8530324] (expected [4])
[1000.0, 25.0, 2235.3, 1.0] => [4.9882255] (expected [6])
MSE on train data is: 1.088669776916504
MSE on test data is: 1.1166337728500366
In no case I claim that Model3 is the best possible for your data. I just wanted to introduce you to ways of working with NNs. You might be also interested in further exploration of topics:
Hope you will find it inspiring for further studies :-)
EDIT:
I am sharing exemplary steps, required for redefinition of this problem from approximation to classification, as for Model0. I would also like to share valuable literature reference in case you would want to get more acquainted with NNs in Python:
[2018 Chollet] Deep Learning with Python
Additional useful function
def give_me_mse(true, prediction):
"""
This function returns mse for 2 vectors: true and predicted values.
"""
return np.mean((true-prediction)**2)
Load X and y from file
# as previosly
Encode target - since now you need 7 vectors reflecting target values (due to the fact that your target has 7 levels)
from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(np.ravel(y))
y_encoded = encoder.transform(np.ravel(y))
# convert integers to dummy variables (i.e. one hot encoded)
y_dummy = np_utils.to_categorical(y_encoded)
Splitting X and y into the Training set and Test set
# reset_all_randomness - for reproducibility
my_init = reset_all_randomness()
# Splitting the dataset into the Training set and Test set
X_train, X_test, y_train, y_test, y_train_dummy, y_test_dummy = train_test_split(X, y, y_dummy, test_size = 0.08, random_state = 0)
Feature Scaling
# as previosly
Model0 - rearranged for classification problem
Now NN produces 7-element output for single input-data entry
Output constitutes of 7 probabilities, which are probabilities of belonging to corresponding target level
# model0
# Initialising the ANN
model0 = Sequential()
# Adding 1 hidden layer: the input layer and the first hidden layer
model0.add(Dense(units = 128, activation = 'tanh', input_dim = 4, kernel_initializer=my_init))
# Adding 2 hidden layer
model0.add(Dense(units = 64, activation = 'tanh', kernel_initializer=my_init))
# Adding 3 hidden layer
model0.add(Dense(units = 32, activation = 'tanh', kernel_initializer=my_init))
# Adding 4 hidden layer
model0.add(Dense(units = 16, activation = 'tanh', kernel_initializer=my_init))
# Adding output layer
model0.add(Dense(units = 7, activation = 'softmax', kernel_initializer=my_init))
# Set up Optimizer
Optimizer = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.99)
# Compiling the ANN
model0.compile(optimizer = Optimizer, loss = 'categorical_crossentropy', metrics=['accuracy','categorical_crossentropy','mse'])
# Fitting the ANN to the Train set, at the same time observing quality on Valid set
history = model0.fit(X_train, y_train_dummy, validation_data=(X_test, y_test_dummy), batch_size = 100, epochs = 1000)
# Generate prediction for both Train and Valid set
y_train_pred_model0 = model0.predict(X_train)
y_test_pred_model0 = model0.predict(X_test)
# find final prediction by taking class with highest probability
y_train_pred_model0 = np.array([[list(x).index(max(list(x))) + 1] for x in y_train_pred_model0])
y_test_pred_model0 = np.array([[list(x).index(max(list(x))) + 1] for x in y_test_pred_model0])
# check what metrics are in fact available in history
history.history.keys()
dict_keys(['val_loss', 'val_acc', 'val_categorical_crossentropy', 'val_mean_squared_error', 'loss', 'acc', 'categorical_crossentropy', 'mean_squared_error'])
# look at model fitting history
plot_history(history, ['mean_squared_error', 'val_mean_squared_error'])
plot_history(history, ['categorical_crossentropy', 'val_categorical_crossentropy'])
plot_history(history, ['acc', 'val_acc'])
# look at model fit quality
plot_fit(pd.DataFrame(y_train), y_train_pred_model0, 'Fit on train data')
plot_fit(pd.DataFrame(y_test), y_test_pred_model0, 'Fit on test data')
print('MSE on train data is: {}'.format(give_me_mse(y_train, y_train_pred_model0)))
print('MSE on test data is: {}'.format(give_me_mse(y_test, y_test_pred_model0)))
MSE on train data is: 0.0
MSE on test data is: 1.3333333333333333
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With