I am planning to use Named Entity Recognition (NER) technique to identify person names (most of which are Indian names) from a given text. I have already explored the CRF-based NER model from Stanford NLP, however it is not quite accurate in recognizing Indian names. Hence I decided to create my own custom NER model via supervised training. I have a fair idea of how to create own NER model using the Stanford NER CRF, but creating a large training corpus with manual annotation is something I would like to avoid, as it is a humongous effort for an individual and secondly obtaining diverse people names from different states of India is also a challenge. Could anybody suggest any automation/programmatic way to prepare a labelled training corpus with at least 100k Indian names?
I have already looked into Facebook and LinkedIn API, but did not find a way to extract 100k number of user's full name from a given location (e.g. India).
I ended up doing the following to create NER model to identify Indian names. This may be useful for anybody looking for creating a custom NER model to recognize non-English person names, since most of the publicly available NER models such as the ones from Stanford NLP were trained with English names and hence are more accurate in identifying English (British/American) names.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With