I recently started using Matlab and I am trying to plot Imaginary part of a function. I can see I am making a mistake somewhere because I have the graph showing what I need to get and I am getting something else. Here is the link of the graph that I need to get, that I am getting and a function that I am plotting:
I know that this function has a singularity at frequency around 270 Hz and I don't know if a 'quadgk' can solve integral then. You guys probably know but theta function inside the integral is a heaviside and I don't know if that is causing problem maybe? Is there something wrong I am doing here? Here is the matlab code I wrote:
clear all
clc
ff=1:10:1000;
K1=(2*3)*log(2*cosh(135/6))/pi;
theta1=ones(size(ff));
theta1(ff<270)=0;
I1=zeros(size(ff));
for n = 1:numel(ff)
f = ff(n);
I1(n)= K1/f + (f/pi)*quadgk(@(x)(sinh(x/3)/(cosh(135/3)+cosh(x/3))-theta1(n))./((f^2)-4*(x.^2)), 0, inf);
end
plot(ff,I1, 'b');
hold on
axis([0 1000 -0.3 1])
quadl
, although this is prob. of minor importance.ff
Here's the code with changes:
fstep=1;
ff=[1:fstep:265 275:fstep:1000];
T = 3;
mu = 135;
df = 0.01;
xmax = 10;
K1=(2*T/pi)*log(2*cosh(mu/(2*T)));
theta1=ones(size(ff));
theta1(ff-2*mu<0)=0;
I1=zeros(size(ff));
for n = 1:numel(ff)
f = ff(n);
sigm1 = @(x) sinh(x/T)./((f^2-4*x.^2).*(cosh(mu/T)+cosh(x/T)));
sigm2 = @(x) -theta1(n)./(f^2-4*x.^2);
I1(n) = K1/f + (f/pi)*quadl(sigm1,0,f/2-df); % term #1
% I1(n) = I1(n) + (f/pi)*quadl(sigm1,f/2+df,xmax); % term #2
% I1(n) = I1(n) + (f/pi)*quadl(sigm2,0,f/2-df); % term #3
% I1(n) = I1(n) + (f/pi)*quadl(sigm2,f/2+df,xmax); % term #4
end
I selected to split the integrals around x=f/2
since there is clearly a singularity there (division by 0). But additional problems occur for terms #2 and #4, that is when the integrals are evaluated for x>f/2
, presumably due to all of the trigonometric terms.
If you keep only terms 1 and 3 you get something reasonably similar to the plot you show:
However you should probably inspect your function more closely and see what can be done to evaluate the integrals for x>f/2
.
EDIT
I inspected the code again and redefined the auxiliary integrals:
I1=zeros(size(ff));
I2=zeros(size(ff));
I3=zeros(size(ff));
for n = 1:numel(ff)
f = ff(n);
sigm3 = @(x) sinh(x/T)./((f^2-4*x.^2).*(cosh(mu/T)+cosh(x/T))) -theta1(n)./(f^2-4*x.^2);
I1(n) = K1/f + (f/pi)*quadl(sigm3,0,f/2-df);
I2(n) = (f/pi)*quadl(sigm3,f/2+df,10);
end
I3=I2;
I3(isnan(I3)) = 0;
I3 = I3 + I1;
This is how the output looks like now:
The green line is the integral of the function over 0<x<f/2
and seems ok. The red line is the integral over Inf>x>f/2
and clearly fails around f=270
. The blue curve is the sum (the total integral) excluding the NaN
contribution when integrating over Inf>x>f/2
.
My conclusion is that there might be something wrong with the curve as you expect it to look.
So far I'd proceed this way:
clc,clear
T = 3;
mu = 135;
f = 1E-04:.1:1000;
theta = ones(size(f));
theta(f < 270)= 0;
integrative = zeros(size(f));
for ii = 1:numel(f)
ff = @(x) int_y(x, f(ii), theta(ii));
integrative(ii) = quad(ff,0,2000);
end
Imm = ((2*T)./(pi*f)).*log(2*cosh(mu/(2*T))) + (f/pi).*integrative;
Imm1 = exp(interp1(log(f(1:2399)),log(Imm(1:2399)),log(f(2400):.001:f(2700)),'linear','extrap'));
Imm2 = exp(interp1(log(f(2985:end)),log(Imm(2985:end)),log(f(2701):.001:f(2984)),'linear','extrap'));
plot([(f(2400):.001:f(2700)) (f(2701):.001:f(2984))],[Imm1 Imm2])
hold on
axis([0 1000 -1.0 1])
plot(f,Imm,'g')
grid on
hold off
with
function rrr = int_y(x,f,theta)
T = 3;
mu = 135;
rrr = ( (sinh(x./T)./(cosh(mu/T) + cosh(x/T))) - theta ) ./ (f.^2 - 4.*(x.^2));
end
I've come up with this plot:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With