I currently have a dataframe in which there are several rows I would like converted to "NA". When I first imported this dataframe from a .csv, I could use na.strings=c("A", "B", "C) and so on to remove the values I didn't want.
I want to do the same thing again, but this time using a dataframe already, not importing another .csv
To import the data, I used:
data<-read.csv("code.csv", header=T, strip.white=TRUE, stringsAsFactors=FALSE, na.strings=c("", "A", "B", "C"))
Now, with "data", I would like to subset it while removing even more specific values in the rows.. I tried someting like:
data2<-data.frame(data, na.strings=c("D", "E", "F"))
Of course this doesn't work because I think na.strings only works with the "read" package.. not other functions. Is there any equivalent to simply convert certain values into NA so I can na.omit(data2) fairly easily?
Thanks for your help.
Here's a way to replace values in multiple columns:
# an example data frame
dat <- data.frame(x = c("D", "E", "F", "G"),
y = c("A", "B", "C", "D"),
z = c("X", "Y", "Z", "A"))
# x y z
# 1 D A X
# 2 E B Y
# 3 F C Z
# 4 G D A
# values to replace
na.strings <- c("D", "E", "F")
# index matrix
idx <- Reduce("|", lapply(na.strings, "==", dat))
# replace values with NA
is.na(dat) <- idx
dat
# x y z
# 1 <NA> A X
# 2 <NA> B Y
# 3 <NA> C Z
# 4 G <NA> A
Just assign the NA values directly.
e.g.:
x <- data.frame(a=1:5, b=letters[1:5])
# > x
# a b
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
# 5 5 e
# convert the 'b' and 'd' in columb b to NA
x$b[x$b %in% c('b', 'd')] <- NA
# > x
# a b
# 1 1 a
# 2 2 <NA>
# 3 3 c
# 4 4 <NA>
# 5 5 e
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With