I have following data shapes
X_Train.shape,Y_Train.shape
Out[52]: ((983, 19900), (983,))
X_Test.shape,Y_Test.shape
Out[53]: ((52, 19900), (52,))
I am running a simple binary classifier as Y_train and Y_test could be either 1 or 2
import keras
import tensorflow as tf
from keras import layers
from keras.layers import Input, Dense
from keras.models import Model,Sequential
import numpy as np
from keras.optimizers import Adam
myModel = keras.Sequential([
keras.layers.Dense(1000,activation=tf.nn.relu,input_shape=(19900,)),
keras.layers.Dense(64, activation=tf.nn.relu),
keras.layers.Dense(32, activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.softmax)
])
myModel.compile(optimizer='adam', loss='sparse_categorical_crossentropy',metrics=['accuracy'])
myModel.fit(X_Train, Y_Train, epochs=100,batch_size=1000)
test_loss,test_acc=myModel.evaluate(X_Test,Y_Test)
Output of the Code
Training Loss and Accuracy
Epoch 1/100
983/983 [==============================] - 1s 1ms/step - loss: nan - acc: 0.4608
Epoch 2/100
983/983 [==============================] - 0s 206us/step - loss: nan - acc: 0.4873
Epoch 3/100
983/983 [==============================] - 0s 200us/step - loss: nan - acc: 0.4883
Epoch 4/100
983/983 [==============================] - 0s 197us/step - loss: nan - acc: 0.4883
Epoch 5/100
983/983 [==============================] - 0s 194us/step - loss: nan - acc: 0.4873
Epoch 6/100
983/983 [==============================] - 0s 202us/step - loss: nan - acc: 0.4863
Epoch 7/100
983/983 [==============================] - 0s 198us/step - loss: nan - acc: 0.4863
Epoch 8/100
983/983 [==============================] - 0s 194us/step - loss: nan - acc: 0.4883
Epoch 9/100
983/983 [==============================] - 0s 196us/step - loss: nan - acc: 0.4873
Epoch 10/100
983/983 [==============================] - 0s 198us/step - loss: nan - acc: 0.4873
Epoch 11/100
983/983 [==============================] - 0s 200us/step - loss: nan - acc: 0.4893
Epoch 12/100
983/983 [==============================] - 0s 198us/step - loss: nan - acc: 0.4873
Epoch 13/100
983/983 [==============================] - 0s 194us/step - loss: nan - acc: 0.4873
Epoch 14/100
983/983 [==============================] - 0s 197us/step - loss: nan - acc: 0.4883
Epoch 97/100
983/983 [==============================] - 0s 196us/step - loss: nan - acc: 0.4893
Epoch 98/100
983/983 [==============================] - 0s 199us/step - loss: nan - acc: 0.4883
Epoch 99/100
983/983 [==============================] - 0s 193us/step - loss: nan - acc: 0.4883
Epoch 100/100
983/983 [==============================] - 0s 196us/step - loss: nan - acc: 0.4863
Testing Loss and Accuracy
test_loss,test_acc
Out[58]: (nan, 0.4615384661234342)
I also checked if there is any nan value in my data
np.isnan(X_Train).any()
Out[5]: False
np.isnan(Y_Train).any()
Out[6]: False
np.isnan(X_Test).any()
Out[7]: False
np.isnan(Y_Test).any()
Out[8]: False
My Question is why my training accuracy is not improving and why loss is nan also why without one-hot encoding the softmax in the output is working fine?
Note1: I apologize that my data is big so I cannot share it here but if there are some way to share it here then I am ready to do that.
Note2 There are lot of zero values in my training data
The reason for nan , inf or -inf often comes from the fact that division by 0.0 in TensorFlow doesn't result in a division by zero exception. It could result in a nan , inf or -inf "value". In your training data you might have 0.0 and thus in your loss function it could happen that you perform a division by 0.0 .
Loss calculation is based on the difference between predicted and actual values. If the predicted values are far from the actual values, the loss function will produce a very large number. Keras is a library for creating neural networks.
Creating custom loss functions in Keras A custom loss function can be created by defining a function that takes the true values and predicted values as required parameters. The function should return an array of losses. The function can then be passed at the compile stage.
Sometimes with Keras the combination of Relu
and Softmax
causes numerical troubles as Relu
can produce large positive values corresponding to very small probabilities.
Try to use tanh
instead of Relu
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With