I am attempting to return a list of widgets from an N-tree data structure. In my unit test, if i have roughly about 2000 widgets each with a single dependency, i'll encounter a stack overflow. What I think is happening is the for loop is causing my tree traversal to not be tail recursive. what's a better way of writing this in scala? Here's my function:
protected def getWidgetTree(key: String) : ListBuffer[Widget] = {
def traverseTree(accumulator: ListBuffer[Widget], current: Widget) : ListBuffer[Widget] = {
accumulator.append(current)
if (!current.hasDependencies) {
accumulator
} else {
for (dependencyKey <- current.dependencies) {
if (accumulator.findIndexOf(_.name == dependencyKey) == -1) {
traverseTree(accumulator, getWidget(dependencyKey))
}
}
accumulator
}
}
traverseTree(ListBuffer[Widget](), getWidget(key))
}
For the same example as in @dhg's answer, an equivalent tail recursive function with no mutable state (the ListBuffer
) would be:
case class Widget(name: String, dependencies: List[String])
val getWidget = List(
Widget("1", List("2", "5")),
Widget("2", List("3", "4")),
Widget("3", List()),
Widget("4", List()),
Widget("5", List())).map { w => w.name -> w }.toMap
def getWidgetTree(key: String): List[Widget] = {
def addIfNotAlreadyContained(widgetList: List[Widget], widgetNameToAdd: String): List[Widget] = {
if (widgetList.find(_.name == widgetNameToAdd).isDefined) widgetList
else widgetList :+ getWidget(widgetNameToAdd)
}
@tailrec
def traverseTree(currentWidgets: List[Widget], acc: List[Widget]): List[Widget] = currentWidgets match {
case Nil => {
// If there are no more widgets in this branch return what we've traversed so far
acc
}
case Widget(name, Nil) :: rest => {
// If the first widget is a leaf traverse the rest and add the leaf to the list of traversed
traverseTree(rest, addIfNotAlreadyContained(acc, name))
}
case Widget(name, dependencies) :: rest => {
// If the first widget is a parent, traverse it's children and the rest and add it to the list of traversed
traverseTree(dependencies.map(getWidget) ++ rest, addIfNotAlreadyContained(acc, name))
}
}
val root = getWidget(key)
traverseTree(root.dependencies.map(getWidget) :+ root, List[Widget]())
}
For the same test case
for (k <- 1 to 5)
println(getWidgetTree(k.toString).map(_.name).toList.sorted)
Gives you:
List(2, 3, 4, 5, 1)
List(3, 4, 2)
List(3)
List(4)
List(5)
Note that this is postorder not preorder traversal.
The reason it's not tail-recursive is that you are making multiple recursive calls inside your function. To be tail-recursive, a recursive call can only be the last expression in the function body. After all, the whole point is that it works like a while-loop (and, thus, can be transformed into a loop). A loop can't call itself multiple times within a single iteration.
To do a tree traversal like this, you can use a queue to carry forward the nodes that need to be visited.
Assume we have this tree:
// 1
// / \
// 2 5
// / \
// 3 4
Represented with this simple data structure:
case class Widget(name: String, dependencies: List[String]) {
def hasDependencies = dependencies.nonEmpty
}
And we have this map pointing to each node:
val getWidget = List(
Widget("1", List("2", "5")),
Widget("2", List("3", "4")),
Widget("3", List()),
Widget("4", List()),
Widget("5", List()))
.map { w => w.name -> w }.toMap
Now we can rewrite your method to be tail-recursive:
def getWidgetTree(key: String): List[Widget] = {
@tailrec
def traverseTree(queue: List[String], accumulator: List[Widget]): List[Widget] = {
queue match {
case currentKey :: queueTail => // the queue is not empty
val current = getWidget(currentKey) // get the element at the front
val newQueueItems = // filter out the dependencies already known
current.dependencies.filterNot(dependencyKey =>
accumulator.exists(_.name == dependencyKey) && !queue.contains(dependencyKey))
traverseTree(newQueueItems ::: queueTail, current :: accumulator) //
case Nil => // the queue is empty
accumulator.reverse // we're done
}
}
traverseTree(key :: Nil, List[Widget]())
}
And test it out:
for (k <- 1 to 5)
println(getWidgetTree(k.toString).map(_.name))
prints:
ListBuffer(1, 2, 3, 4, 5)
ListBuffer(2, 3, 4)
ListBuffer(3)
ListBuffer(4)
ListBuffer(5)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With