Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

My mergesort algorythm is slower with OpenMP, how can I make it faster then the serialized form?

I'm doing a study on parallel programming and testing it on Sorting algorithms. The easiest way I found to do it is using OpenMP, as it offer a simple way to implement threads. I did a research and found that other people already done it, and then I tried some codes. But, when I test it with perf stat -r 10 -d on Linux I'm getting a worse time than the serialized code (in some cases it is double the time). I tried with a different number of elements on the array, the maximum I used was 1.000.000 numbers, as if I use more I get a error.


void merge(int aux[], int left, int middle, int right){
    int temp[middle-left+1], temp2[right-middle];
    for(int i=0; i<(middle-left+1); i++){
        temp[i]=aux[left+i];
    }
    for(int i=0; i<(right-middle); i++){
        temp2[i]=aux[middle+1+i];
    }
    int i=0, j=0, k=left;
    while(i<(middle-left+1) && j<(right-middle))
    {
        if(temp[i]<temp2[j]){
            aux[k++]=temp[i++];
        }
        else{
            aux[k++]=temp2[j++];
        }
    }
    while(i<(middle-left+1)){
        aux[k++]=temp[i++];
    }
    while(j<(right-middle)){
        aux[k++]=temp2[j++];
    }
}

void mergeSort (int aux[], int left, int right){
    if (left < right){
        int middle = (left + right)/2;
        omp_set_num_threads(2);
        #pragma omp parallel
        {

            #pragma omp sections
            {
                #pragma omp section
                    mergeSort(aux,left,middle); //call 1
                #pragma omp section
                    mergeSort(aux,middle+1,right); //call 2
            }
        }
        merge(aux,left,middle,right);
    }
}

int main(){
    generate_list(Vet, n);
    mergeSort(Vet, 0, n-1);

    return(0);
}

Below are the results i'm receiving:

OpenMP code:

Performance counter stats for ./mergeomp (10 runs):

         12,489169      task-clock (msec)         #    0,717 CPUs utilized            ( +-  3,58% )
                 8      context-switches          #    0,681 K/sec                    ( +-  6,62% )
                 0      cpu-migrations            #    0,000 K/sec                  
               167      page-faults               #    0,013 M/sec                    ( +-  0,79% )
   <not supported>      cycles                                                      
   <not supported>      instructions                                                
   <not supported>      branches                                                    
   <not supported>      branch-misses                                               
   <not supported>      L1-dcache-loads                                             
   <not supported>      L1-dcache-load-misses                                       
   <not supported>      LLC-loads                                                   
   <not supported>      LLC-load-misses                                             

           0,01743 +- 0,00211 seconds time elapsed  ( +- 12,10% )

Serialized way(simple code):

Performance counter stats for ./mergesort (10 runs):

          3,757053      task-clock (msec)         #    0,449 CPUs utilized            ( +-  0,72% )
                 1      context-switches          #    0,293 K/sec                    ( +- 16,32% )
                 0      cpu-migrations            #    0,000 K/sec                  
               139      page-faults               #    0,037 M/sec                    ( +-  0,34% )
   <not supported>      cycles                                                      
   <not supported>      instructions                                                
   <not supported>      branches                                                    
   <not supported>      branch-misses                                               
   <not supported>      L1-dcache-loads                                             
   <not supported>      L1-dcache-load-misses                                       
   <not supported>      LLC-loads                                                   
   <not supported>      LLC-load-misses                                             

          0,008375 +- 0,000276 seconds time elapsed  ( +-  3,29% )

Am I doing anything wrong? I'm compiling it with the -fopenmp flag, but don't know if merge sort is not good to be parallelized, or if my linux virtual machine (I'm running Ubuntu on a VM Virtual Box machine, my PC have a Core I7 processor) is not well configured.

like image 223
Luiz Avatar asked Nov 07 '22 17:11

Luiz


1 Answers

Thanks for everyone I resolved the issue.

First of all I had not setted multicores on my Virtual Machine.

Then, I changed the sections construct for task.

I also used a bigger number of elements on my array (2 Million).

And finally I added a filter to stop using parallelism when the array is smaller then "n" elements:

void mergeSortSerial(int aux[], int left, int right){
    if (left < right){
        int middle = (left + right)/2;
        mergeSortSerial(aux,left,middle); //call 1
        mergeSortSerial(aux,middle+1,right); //call 2
        merge(aux,left,middle,right);
    }
}

void mergeSort (int aux[], int left, int right){
    if (left < right){
        if ((right-left) > 1000){
            int middle = (left + right)/2;
           #pragma omp task firstprivate (aux, left, middle)
                mergeSort(aux,left,middle); //call 1
            #pragma omp task firstprivate (aux, middle, right)
                mergeSort(aux,middle+1,right); //call 2
            #pragma omp taskwait
            merge(aux,left,middle,right);
        } else{mergeSortSerial(aux, left, right);}
    }
}

I found out that 1.000.000 is the best number for "n", my algorithm is 2 times faster then the sequential.

like image 91
Luiz Avatar answered Nov 15 '22 05:11

Luiz